Answer:
Step-by-step explanation:
By inscribed angle theorem:
![m\angle R = \frac{1}{2} [360 \degree - (120 \degree + 140 \degree)] \\ \\ m\angle R = \frac{1}{2} [360 \degree -260 \degree] \\ \\ m\angle R = \frac{1}{2} \times 100 \degree \\ \\ m\angle R = 50 \degree \\ \\](https://tex.z-dn.net/?f=m%5Cangle%20R%20%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%5B360%20%5Cdegree%20-%20%28120%20%5Cdegree%20%2B%20140%20%5Cdegree%29%5D%20%20%5C%5C%20%20%5C%5C%20m%5Cangle%20R%20%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%5B360%20%5Cdegree%20-260%20%5Cdegree%5D%20%20%5C%5C%20%20%5C%5C%20%20m%5Cangle%20R%20%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20100%20%5Cdegree%20%20%5C%5C%20%20%5C%5C%20%20m%5Cangle%20R%20%20%3D%2050%20%5Cdegree%20%20%5C%5C%20%20%5C%5C%20)
Answer:
it would take 23 hours
Step-by-step explanation:
You turn an improper fraction to a decimal by dividing the numerator (number on top) by the denominator (number under).
Impossible to answer without diagram, please repost with diagram so we can help.
2W + 2L = 820
<span>LW = 42,000 or L = 42,000/W </span>
<span>substitute second equation into first equation: </span>
<span>2W + 2(42,000/W) = 820 </span>
<span>2W + 84,000/W = 820 </span>
<span>2W^2/W + 84,000/W = 820W/W </span>
<span>2W^2 - 820W + 84,000 = 0 </span>
<span>quadratic formula: </span>
<span>W = [820 +/- SQR(672,400 - 4(2)(84,000))]/2(2) </span>
<span>W = [820 +/- 20]/4 </span>
<span>W = 200, 210 </span>
<span>using second equation: </span>
<span>L = 42,000/200, 42,000/210 = 210, 200 </span>
<span>The dimensions of the parking lot are 200ft by 210ft.</span>