1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gtnhenbr [62]
3 years ago
9

Please help me out here! :)

Mathematics
1 answer:
Sergio [31]3 years ago
6 0

Answer:

it would take 23 hours

Step-by-step explanation:

You might be interested in
Maribel surveyed 55 people to find out their favorite types of music. The results are shown in the bar graph. Based on the infor
salantis [7]

Answer:

B. Jazz and opra

Step-by-step explanation:

40 percent of 55 is 22. Find whatever is equal to 22

6 0
3 years ago
If a storm window has an area of 640 square inches, what is the equation to find the dimensions when the window is 20 inches hig
Lyrx [107]
Area = width * height
since the window is 20 inches higher than the width:
width +20 = height

640 = width * width+20
640 = width^2 +20*width
width^2 +20*width - 640 = 0
width = 17.203
**********************************************************
Double Check
if width = 17.203 then height = 37.203
area = 17.203 * 37.203 = 640 square inches Correct!!


8 0
3 years ago
(9x+4) what is the answer hurry taking a test
igor_vitrenko [27]

Answer:

9x+4

Step-by-step explanation:

remove the parentheses

8 0
3 years ago
Read 2 more answers
Simplify x + 2 + x + 2 + x + 2 + x + 2 + x + 2 + x + 2 + x + 2 + x + 2 + x + 2. Write in simplified form, giving reasons. Someon
Oksanka [162]

easiest thing to do is combine like terms. There are 9 2's, which means 9(2) which equals 18. Now for the X's. There are 9 X's meaning (9)x which is 9x. This all makes up

18+9x

hope this helps

6 0
3 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • A​ positive-sum game occurs
    10·1 answer
  • What is 8.19 divided by 4.2 and show your work
    9·1 answer
  • This question is 11 points
    12·2 answers
  • James has 12 Xbox games, including 3 race car games. If James randomly selected a game, what is the probability it will be a rac
    14·2 answers
  • What expression is equivalent to 9^-2
    6·2 answers
  • In the diagram below DE and EF are tangent to O what is the measure of DF​
    13·2 answers
  • Please Help! I'll give thanks and best rate if its correct! (type link into another tab)
    10·2 answers
  • What is the area of the blue sector? <br>I need help please​
    13·1 answer
  • What is ABC classified as?
    6·2 answers
  • Whats the diameter and radius? (I'll solve the rest this is just a bit confusing...)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!