6 2/3 = 20/3 = 60/9
4 4/9 = 40/9
60/9 - 40/9 = 20/9 = 2 2/9
Answer:
25; 4; 1
Step-by-step explanation:
|------------| ( | |)-------------|
25% 25% ( 25% ) 25%
Answer:
The range of T is a subspace of W.
Step-by-step explanation:
we have T:V→W
This is a linear transformation from V to W
we are required to prove that the range of T is a subspace of W
0 is a vector in range , u and v are two vectors in range T
T = T(V) = {T(v)║v∈V}
{w∈W≡v∈V such that T(w) = V}
T(0) = T(0ⁿ)
0 is Zero in V
0ⁿ is zero vector in W
T(V) is not an empty subset of W
w₁, w₂ ∈ T(v)
(v₁, v₂ ∈V)
from here we have that
T(v₁) = w₁
T(v₂) = w₂
t(v₁) + t(v₂) = w₁+w₂
v₁,v₂∈V
v₁+v₂∈V
with a scalar ∝
T(∝v) = ∝T(v)
such that
T(∝v) ∈T(v)
so we have that T(v) is a subspace of W. The range of T is a subspace of W.
Answer:60
Step-by-step explanation:The measure of 1 is 60 because it's only half the size of 120
3/10 is the answer to 4/5-1/2