Answer:
3.
Step-by-step explanation:
Find the midpoint of BC:
midpoint = (-1+5)/2, (2-2)/2 = (2, 0).
The slope of BC = (2 - -2) / (-1-5) = -2/3.
Find the equation of the right bisector of BC:
The slope = -1 / -2/3 = 3/2.
y-y1 = m(x-x1)
y - 0 = 3/2(x - 2)
y = 3/2x - 3.
Now find the equation of the median through C:
The midpoint of AB = (1 - 1)/2, (4+2)/2
= (0, 3).
The equation of the median:
The slope = (-2-3) / (5-0)
= -1.
The equation is:
y - 3 = -1(x - 0)
y -3 = -x.
Now we find the point of intersection by solving the 2 equations:
y - 3 = -x
y = 3/2x - 3
y = -x + 3
So:
3/2x - 3 = -x + 3
3/2x + x = 6
5/2 x = 6
x = 12/5.
y = -12/5 + 3
= -12/5 + 15/5
= 3/5.
The sum of the coordinates = 12/5 + 3 /5
= 15/5
= 3.
The mean, median, and mode are equal to 1. So among the choices, the first one is correct - mean = mode
Mean - an <em>average </em>of the given set of number; to find this, add the numbers and divide it by 11 (the number of given data)
= (-1 + -1 + 0 + 1 + 1 + 1 + 1 + 2 + 2 + 2 + 3) / 11
= 1
Median - the <em>middle or center</em> of the given set; to find this, arrange the numbers in numerical order, then get the center or middle number as the median
= <span>-1, -1, 0, 1, 1, 1, 1, 2, 2, 2, 3
= [</span><span>-1, -1, 0, 1, 1,] <u>1</u>, [1, 2, 2, 2, 3]
Mode - is the value that occurs most of the time in the given set; so obviously <em>number 1 occurred four times</em> so 1 is our mode
</span>
(0, 3)
<span>-x + 3y=9
to figure out the y-intercept, you must put the equation into y-intercept form first: y = mx + b
</span><span>-x+3y=9
3y = x + 9
y = (x/3) + (9/3)
y = x/3 + 3
</span>
The answer your looking for well be A
Answer:
We conclude that there has been a significant reduction in the proportion of females.
Step-by-step explanation:
We are given the following in the question:
Sample size, n = 400
p = 50% = 0.5
Alpha, α = 0.05
Number of women, x = 118
First, we design the null and the alternate hypothesis
This is a one-tailed test.
Formula:
Putting the values, we get,
Now, we calculate the critical value.
Now, 
Since the calculated z-statistic is less than the critical value, we fail to accept the null hypothesis and reject it. We accept the alternate hypothesis.
Thus, there has been a significant reduction in the proportion of females.