Answer:
Calculating percentages are important as they apply to real life activities. For example, shopping. If you are on a budget and you want to know how much your total is with tax, you can convert the decimal for the tax, turn it into a percent and add it to your total. Another example is eating at a restaurant. A good tip is 15-20% so you can calculate this and add it to your price.
Step-by-step explanation:
Answer:
505.85
Step-by-step explanation:
Because 33.5 × 15.1 is 505.85.
Answer:
its literally +5
Step-by-step explanation:
13-8= 5
18-13=5
23-18=5
26 skate and with wunno when ask what about the gc and the park to park in
The dimensions and volume of the largest box formed by the 18 in. by 35 in. cardboard are;
- Width ≈ 8.89 in., length ≈ 24.89 in., height ≈ 4.55 in.
- Maximum volume of the box is approximately 1048.6 in.³
<h3>How can the dimensions and volume of the box be calculated?</h3>
The given dimensions of the cardboard are;
Width = 18 inches
Length = 35 inches
Let <em>x </em>represent the side lengths of the cut squares, we have;
Width of the box formed = 18 - 2•x
Length of the box = 35 - 2•x
Height of the box = x
Volume, <em>V</em>, of the box is therefore;
V = (18 - 2•x) × (35 - 2•x) × x = 4•x³ - 106•x² + 630•x
By differentiation, at the extreme locations, we have;

Which gives;

6•x² - 106•x + 315 = 0

Therefore;
x ≈ 4.55, or x ≈ -5.55
When x ≈ 4.55, we have;
V = 4•x³ - 106•x² + 630•x
Which gives;
V ≈ 1048.6
When x ≈ -5.55, we have;
V ≈ -7450.8
The dimensions of the box that gives the maximum volume are therefore;
- Width ≈ 18 - 2×4.55 in. = 8.89 in.
- Length of the box ≈ 35 - 2×4.55 in. = 24.89 in.
- The maximum volume of the box, <em>V </em><em> </em>≈ 1048.6 in.³
Learn more about differentiation and integration here:
brainly.com/question/13058734
#SPJ1