It looks like you want to compute the double integral

over the region <em>D</em> with the unit circle <em>x</em> ² + <em>y</em> ² = 1 as its boundary.
Convert to polar coordinates, in which <em>D</em> is given by the set
<em>D</em> = {(<em>r</em>, <em>θ</em>) : 0 ≤ <em>r</em> ≤ 1 and 0 ≤ <em>θ</em> ≤ 2<em>π</em>}
and
<em>x</em> = <em>r</em> cos(<em>θ</em>)
<em>y</em> = <em>r</em> sin(<em>θ</em>)
d<em>x</em> d<em>y</em> = <em>r</em> d<em>r</em> d<em>θ</em>
Then the integral is

Answer:
1 a.) 2t – 2
1 b.) –9z + 4
2 a.) –2v + 3
2 b.) –13k – 9
3 a.) 7w − 2
3 b.) 10s
4 a.) 5
4 b.) –3p + 11
5 a.) –29x + 9
b.) 15v – 60x – 2
a.) 25n + 2
b.) –15n
a.) –71x + 4
b.) –15b
Step-by-step explanation:
- <em>NOTE: I am kind of confused about the way this question is formatted, so I tried to answer everything I could decipher.</em>
1 a.) –2t + 5t – 2 – t → 2t – 2
1 b.) –5z + 4 – 4z → –9z + 4
2 a.) 8v + 3 – 10v → –2v + 3
2 b.) –6 – 6k – 3 – 7k → –13k – 9
3 a.) –6 – 3w + 4 + 10w → 7w − 2
3 b.) 9s + s → 10s
4 a.) 6 + 8b – 1 – 8b → 5
4 b.) 1p + 6 + 5 – 4p → –3p + 11
5 a.) 4x – 3x + 9 – 6x 5 → –29x + 9
b.) 9v + 6v – 2 – 10x 6 → 15v – 60x – 2
a.) n + 2 – (–4)n 6 → 25n + 2
b.) 6n – 3n 7 → –15n
a.) –4x – 4x + 4 – 9x 7 → –71x + 4
b.) –9b + (–6)b → –15b
There are a few other ways to answer this but one way i know is 5x + 15
Answer:
Quarter 2
Explanation:
Quarter 1 had a 4.19505% increase in earnings, but quarter 2 had a 11.586% increase.