2 is the answer because if you subtract 12 to 1 it will be 11 and time by 0 and it will be 0 add by 4 and divide it by 2 and it will be 2.
We have:
Event A ⇒ P(A) = 0.16
Event B ⇒ P(B) = 0.09
Probability of event B given event A happening, P(B|A) = P(A∩B) / P(A) = 0.12
By the conditional probability, the probability of event A and event B happens together is given by:
P(B|A) = P(A∩B) ÷ P(A)
P(B|A) = P(A∩B) ÷ 0.16
0.12 = P(A∩B) ÷ 0.16
P(A∩B) = 0.12 × 0.16
P(A∩B) = 0.0192
When two events are independent, P(A) × P(B) = P(A∩B) so if P(A∩B) = 0.0192, then P(B) will be 0.0192 ÷ 0.16 = 0.12 (which take us back to P(B|A))
Since P(B|A) does not equal to P(B), event A and event B are not independent.
Answer: <span>Events A and B are not independent because P(B|A) ≠ P(B)</span>
Answer:
Proportional
Step-by-step explanation:
Answer: 0.9762
Step-by-step explanation:
Let A be the event that days are cloudy and B be the event that days are rainy for January month .
Given : The probability that the days are cloudy = 
The probability that the days are cloudy and rainy = 
Now, the conditional probability that a randomly selected day in January will be rainy if it is cloudy is given by :-

Hence, the probability that a randomly selected day in January will be rainy if it is cloudy = 0.9762