Order of Operations:
1. Parentheses
2. Exponents
3. Multiplication
4. Division
5. Addition
6. Subtraction
Step-By-Step Explanation:
1. Take 9 • 11 = 99
2. Take 10 / 2 = 5
3. Take 2 + 10 - 99 = -87
So -87 would be your final answer. Hope that helped!
Answer:
y=5,902,060*(.957)^t
Step-by-step explanation:
Since the original amount would be decreasing and it's an exponential one, hence the "every year", we can determine that it's an exponential decay equation.
The exponential delay equation is y=A*(1-r)^t. The y is the remaining amount, A is the original amount, r is the rate in decimal form, and t is for years. "1-r" is for decreasing rates and "1+r" is for increasing rates.
First thing we need to do is turn the rate, 4.3%, from a percentage to a decimal. You can do this by moving the decimal two places to the right, which gives you 0.043.
Now plug the numbers into the equation.
y=5,902,060*(1-0.043)^t
Simplify what's inside the parenthesis and get your final equation.
y=5,902,060*(.957)^t
Mode 17,
Mean is 19.3
Median 18.

but anyway, the numerator will give the angles, and θ is just half of each

ok... that's a negative tiny angle, is in the 4th quadrant, if we stick to the range given, from 0 to 360, so we have to use the positive version of it, 360-4.025
so the angle is 355.975°
now, the 3rd quadrant has another angle whose sine is negative, so... if we move from the 180° line down by 4.025, we end up at 184.025°
and those are the only two angles, because, on the 2nd and 1st quadrants, the sine is positive, so it wouldn't have an angle there