The most common element found in crayons would be carbon and hydrogen. Since crayons are made up of paraffin and other chemical pigments. Paraffin is wax like material, which is derived from petroleum, wood, or coal. All three contain large amounts of hydrocarbons, which is carbon and hydrogen compounds.
the force between the electron and the proton.
a) Use F = k * q1 * q2 / d²
where k = 8.99e9 N·m²/C²
and q1 = -1.602e-19 C (electron)
and q2 = 1.602e-19 C (proton)
and d = distance between point charges = 0.53e-10 m
The negative result indicates "attraction".
the radial acceleration of the electron.
b) Here, just use F = ma
where F was found above, and
m = mass of electron = 9.11e-31kg, if memory serves
a = radial acceleration
the speed of the electron.
c) Now use a = v² / r
where a was found above
and r was given
<span> the period of the circular motion.</span>
d) period T = 2π / ω = 2πr / v
where v was found above
and r was given
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
Answer:
moles H₂O = 10
Explanation:
The mass of Na₂CO₃⋅xH₂O is 3.837 g and the mass of Na₂CO₃ is 1.42g
Therefore the mass of xH₂O is 3.837 - 1.42 = 2.417 g
The molar mass of Na₂CO₃ is 106 g/mol and for H₂O is 18 g/mol
The moles of Na₂CO₃ and H₂O in the sample are:
Na₂CO₃ = 1.42 / 106 = 0.01340 moles
H₂O = 2.417 / 18 = 0.1343
Now using rule of three :
1 mole of Na₂CO₃ has x moles of H₂O
0.01340 moles of Na₂CO₃ has 0.1343 moles of H₂O
x = 1 * 0.1343 / 0.01340 = 10