Linear fonction's equation : y = ax
So only in y = 2x
2 is the constant of <span>proportionality</span>
Answer:
1/2
Step-by-step explanation:
1/4=2/8
2/8+2/8=4/8=1/2
(a) Take the Laplace transform of both sides:


where the transform of
comes from
![L[ty'(t)]=-(L[y'(t)])'=-(sY(s)-y(0))'=-Y(s)-sY'(s)](https://tex.z-dn.net/?f=L%5Bty%27%28t%29%5D%3D-%28L%5By%27%28t%29%5D%29%27%3D-%28sY%28s%29-y%280%29%29%27%3D-Y%28s%29-sY%27%28s%29)
This yields the linear ODE,

Divides both sides by
:

Find the integrating factor:

Multiply both sides of the ODE by
:

The left side condenses into the derivative of a product:

Integrate both sides and solve for
:


(b) Taking the inverse transform of both sides gives
![y(t)=\dfrac{7t^2}2+C\,L^{-1}\left[\dfrac{e^{s^2}}{s^3}\right]](https://tex.z-dn.net/?f=y%28t%29%3D%5Cdfrac%7B7t%5E2%7D2%2BC%5C%2CL%5E%7B-1%7D%5Cleft%5B%5Cdfrac%7Be%5E%7Bs%5E2%7D%7D%7Bs%5E3%7D%5Cright%5D)
I don't know whether the remaining inverse transform can be resolved, but using the principle of superposition, we know that
is one solution to the original ODE.

Substitute these into the ODE to see everything checks out:

Answer:
<em>(J) </em>
Step-by-step explanation:
If the scale factor of dilation is greater than 1, the image is an enlargement.
If the scale factor of dilation is between 0 and 1, the image is a reduction.
Answer:

Step-by-step explanation:

Subtract 5 from both sides.

Simplify.

Multiply both sides by 4.

Simplify.

Divide both sides by 3.

Simplify.
