One of the ways to graph this is to use plug in a few x-values and get an idea of the shape. Since the x values keep getting squared, there is an exponential increase on either side of the y-axis. You can see this by plugging in a few values:
When
x=0,f(x)=0
x=1,f(x)=1^2=1
x=2,f(x)=2^2=4
x=3,f(x)=3^2=9
x=4,f(x)=4^2=16
The same holds true for negative x-values to the left of the y-axis since a negative value squared is positive. For example,
x=−1,f(x)=(−1)2=1*−1=1
x=2,f(x)=(−2)2=−2*−2=4
The graph of f(x)=x^2 is called a "Parabola." It looks like this:
Answer:
y = 4x - 1
Step-by-step explanation:
The <em>proposed</em> design of the atrium (<em>V < V'</em>) is possible since its volume is less than the <em>maximum possible</em> atrium.
<h3>Can this atrium be built in the rectangular plot of land?</h3>
The atrium with the <em>maximum allowable</em> radius (<em>R</em>), in feet, is represented in the image attached. The <em>real</em> atrium is possible if and only if the <em>real</em> radius (<em>r</em>) is less than the maximum allowable radius and therefore, the <em>real</em> volume (<em>V</em>), in cubic feet, must be less than than <em>maximum possible</em> volume (<em>V'</em>), in cubic feet.
First, we calculate the volume occupied by the maximum allowable radius:
<em>V' =</em> (8 · π / 3) · (45 ft)³
<em>V' ≈</em> 763407.015 ft³
The <em>proposed</em> design of the atrium (<em>V < V'</em>) is possible since its volume is less than the <em>maximum possible</em> atrium.
To learn more on volumes, we kindly invite to check this verified question: brainly.com/question/13338592
1) The probability of getting a queen is 187/10000 which is 0.0187 = 1.87%
2) The probability is 449 / 479 which is 0.937 = 93.7%
You may need to round the answers. It doesn't say if they need to be rounded or not.