Answer:
<u><em>9 months</em></u>
Step-by-step explanation:
Principal= P= $1200
Rate=R= 15%
Interest= I= $135
Time= T= ?
I=P*R*T/100
135= 1200*15*T/100
135*100=18000*T
13500/18000=T
T= 0.75 years
T= 0.75*12= 9 months
Answer:

Step-by-step explanation:
Hello,
Based on the indication, we can write this polynomial as below, k being a real number that we will have to identify (degree = 3 and we have three zeroes -3, -1, and 2).

We know that the point (1,10) is on the graph of this function, so we can say.

Then the solution is:

Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer:
x= 7 sorry if I'm wrong:(
Step-by-step explanation:
7x - 7 = 4x + 14
7x - 7 - 4x = 4x + 14 - 4x
3x - 7 = 14
3x - 7 + 7 = 14 + 7
3x = 21
x = 21/3
x = 7
9514 1404 393
Answer:
-3 ≤ x ≤ 19/3
Step-by-step explanation:
This inequality can be resolved to a compound inequality:
-7 ≤ (3x -5)/2 ≤ 7
Multiply all parts by 2.
-14 ≤ 3x -5 ≤ 14
Add 5 to all parts.
-9 ≤ 3x ≤ 19
Divide all parts by 3.
-3 ≤ x ≤ 19/3
_____
<em>Additional comment</em>
If you subtract 7 from both sides of the given inequality, it becomes ...
|(3x -5)/2| -7 ≤ 0
Then you're looking for the values of x that bound the region where the graph is below the x-axis. Those are shown in the attachment. For graphing purposes, I find this comparison to zero works well.
__
For an algebraic solution, I like the compound inequality method shown above. That only works well when the inequality is of the form ...
|f(x)| < (some number) . . . . or ≤
If the inequality symbol points away from the absolute value expression, or if the (some number) expression involves the variable, then it is probably better to write the inequality in two parts with appropriate domain specifications:
|f(x)| > g(x) ⇒ f(x) > g(x) for f(x) > 0; or -f(x) > g(x) for f(x) < 0
Any solutions to these inequalities must respect their domains.