#22. We are given that y = 1/4. So, we want to plug this value into the expression 15/y:
15/(1/4)
When you divide by a fraction, you should follow the rule “flip the guy and multiply”. Basically, 15/(1/4) = 15 * 4 = 60.
The answer for #22 is (D).
#23. We can use a proportion:
(The shaded area)/(entire circle area) = (360 - 60)/360
But, we don’t have to find the areas of the region and circle; we can just solve the fraction:
(360 - 60)/360 = 300/360 = 30/36 = 5/6
The answer for #23 is (A).
An just tryna get points
Step-by-step explanation:
The range is 30 to find the range u subtract the biggest from the smallest so 81-51=30 hope this helps
- Diameter of cylinder is <u>1</u><u>4</u><u> </u><u>units.</u>
<h3><u>Explamation </u><u>:</u></h3>
<em><u>Given </u></em><em><u>:</u></em><em><u>-</u></em>
- Volume of cylinder = 245π cubic units
- Height of cylinder = 5 units
<em><u>To </u></em><em><u>Find </u></em><em><u>:</u></em><em><u>-</u></em>
<em><u>Solution </u></em><em><u>:</u></em><em><u>-</u></em>
<em>Firstly </em><em>lets </em><em>calculate </em><em>radius </em><em>of </em><em>cylinder </em><em>by </em><em>using </em><em>formula </em><em>of </em><em>volume </em><em>of </em><em>cylinder,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>
- Volume of cylinder = πr²h
<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>
➸ 245π = π × r² × 5
<em>By </em><em>cutting </em><em>'π' </em><em>with </em><em>'π' </em><em>we </em><em>get;</em>
➸ 245 = r² × 5
➸ 245/5 = r²
➸ 49 = r²
➸ √(49) = r²
➸ √(<u>7</u><u> </u><u>×</u><u> </u><u>7</u><u>)</u> = r²
➸ 7 = r
➸ r = 7 units
- <u>Hence,</u><u> </u><u>radius </u><u>of </u><u>cylinder </u><u>is </u><u>7</u><u> </u><u>units.</u>
<em>Now </em><em>lets </em><em>calculate </em><em>its </em><em>diameter,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>
<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>
➸ Diameter = 7 × 2
➸ Diameter = 14 units
- <u>Hence,</u><u> </u><u>diameter </u><u>of </u><u>cylinder </u><u>is </u><u>1</u><u>4</u><u> </u><u>units.</u>