If
and
, separate variables in the differential equation to get

Integrate both sides:

Use the initial condition to solve for
:

Then the particular solution to the initial value problem is

(A)
Answer: 1.5miles/hour
Step-by-step explanation:
Answer:
the answer is 230 calories :)
Step-by-step explanation:
divide 160 by 16 to find out how much 1-oz is then times it by 23 to get the amount of calories in 23-oz. There you go I hope it helps :)
Answer:
Bottom left graph
Step-by-step explanation:
We have to use what is called the zero-interval test [test point] in order to figure out which portion of the graph these inequalities share:
−2x + y ≤ 4 >> Original Standard Equation
+ 2x + 2x
_________
y ≤ 2x + 4 >> Slope-Intercept Equation
−2[0] + 0 ≤ 4
0 ≤ 4 ☑ [We shade the part of the graph that CONTAINS THE ORIGIN, which is the right side.]
[We shade the part of the graph that does not contain the origin, which is the left side.]
So, now that we got that all cleared up, we can tell that the graphs share a region in between each other and that they both have POSITIVE <em>RATE OF CHANGES</em> [<em>SLOPES</em>], therefore the bottom left graph matches what we want.
** By the way, you meant
because this inequality in each graph is a <em>dashed</em><em> </em><em>line</em>. It is ALWAYS significant that you be very cautious about which inequalities to choose when graphing. Inequalities can really trip some people up, so once again, please be very careful.
I am joyous to assist you anytime.