Answer:
x= ±
+2
Step-by-step explanation:
Use the formula ( b/2) ^2 in order to create a new term. Solve for x by using this term to complete the square.
x= ±
+2
Measure of the flour is greater than the measure of the sugar
Answer:
a. 19.68 miles per gallon.
b. 26.32 miles per gallon.
Step-by-step explanation:
Mean gas mileage (μ) = 23.0 mpg
Standard deviation (σ) = 4.9 mpg
In a normal distribution, for any length X, the z-score is determined by the following expression:
![z=\frac{X-\mu}{\sigma}](https://tex.z-dn.net/?f=z%3D%5Cfrac%7BX-%5Cmu%7D%7B%5Csigma%7D)
In a normal distribution, the 25th percentile (first quartile) of a normal distribution has a corresponding z-score of z = -0.677 and the 75th percentile has a corresponding z-score of z = 0.677
a. The first quartile of the distribution of gas mileage is
![-0.677=\frac{X_{25}-23}{4.9}\\X_{25}=19.68\ mpg](https://tex.z-dn.net/?f=-0.677%3D%5Cfrac%7BX_%7B25%7D-23%7D%7B4.9%7D%5C%5CX_%7B25%7D%3D19.68%5C%20mpg)
19.68 miles per gallon.
b. The third quartile of the distribution of gas mileage is
![0.677=\frac{X_{25}-23}{4.9}\\X_{25}=26.32\ mpg](https://tex.z-dn.net/?f=0.677%3D%5Cfrac%7BX_%7B25%7D-23%7D%7B4.9%7D%5C%5CX_%7B25%7D%3D26.32%5C%20mpg)
26.32 miles per gallon.
We have to express the ratio 1 : 3.5 in the form p:q where p and q are whole numbers.
Consider the ratio of 1 and 3.5,
1 : 3.5 = ![\frac{1}{3.5}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B3.5%7D%20)
= ![\frac{10}{35}](https://tex.z-dn.net/?f=%20%5Cfrac%7B10%7D%7B35%7D%20)
Reducing the above fraction to its lowest form.
So, we get ![\frac{10}{35}=\frac{2}{7}](https://tex.z-dn.net/?f=%20%5Cfrac%7B10%7D%7B35%7D%3D%5Cfrac%7B2%7D%7B7%7D%20)
Therefore, the ratio 1 : 3.5 is expressed as ![\frac{2}{7}](https://tex.z-dn.net/?f=%20%5Cfrac%7B2%7D%7B7%7D%20)
where 2 and 7 are the whole numbers.
Answer:
![\dfrac{-2}{3} \div 2\dfrac{1}{4} = \dfrac{-8}{27}](https://tex.z-dn.net/?f=%5Cdfrac%7B-2%7D%7B3%7D%20%5Cdiv%202%5Cdfrac%7B1%7D%7B4%7D%20%3D%20%5Cdfrac%7B-8%7D%7B27%7D)
Step-by-step explanation:
Given
![\dfrac{-2}{3} \div 2\dfrac{1}{4} =](https://tex.z-dn.net/?f=%5Cdfrac%7B-2%7D%7B3%7D%20%5Cdiv%202%5Cdfrac%7B1%7D%7B4%7D%20%3D)
Required
Solve
Start by converting the mixed number to improper fraction
![\dfrac{-2}{3} \div \dfrac{9}{4} =](https://tex.z-dn.net/?f=%5Cdfrac%7B-2%7D%7B3%7D%20%5Cdiv%20%5Cdfrac%7B9%7D%7B4%7D%20%3D)
Convert the division to muliplication
![\dfrac{-2}{3} * \dfrac{4}{9} =](https://tex.z-dn.net/?f=%5Cdfrac%7B-2%7D%7B3%7D%20%2A%20%5Cdfrac%7B4%7D%7B9%7D%20%3D)
![\dfrac{-2*4}{3*9}=](https://tex.z-dn.net/?f=%5Cdfrac%7B-2%2A4%7D%7B3%2A9%7D%3D)
![\dfrac{-8}{27}](https://tex.z-dn.net/?f=%5Cdfrac%7B-8%7D%7B27%7D)
Hence:
![\dfrac{-2}{3} \div 2\dfrac{1}{4} = \dfrac{-8}{27}](https://tex.z-dn.net/?f=%5Cdfrac%7B-2%7D%7B3%7D%20%5Cdiv%202%5Cdfrac%7B1%7D%7B4%7D%20%3D%20%5Cdfrac%7B-8%7D%7B27%7D)