Answer:
<u>Question (a)</u>
Midpoint of a line segment:

Given:

Given:

<u>Question (b)</u>
Find slopes (gradients) of JL and MK then compare. If the product of the slopes of JL and MK equal -1, then JL and MK are perpendicular.

Given:

Given:


Hence segments JL and MK are perpendicular
Answer:
3
Step-by-step explanation:
3/3x + 1/x+4 = 10/7x
3/3x + 1/x+4 = 10/7x , x=0,x=-4
1/x + 1/x+4 = 10/7x
1/x + 1/x+4 - 10/7x = 0
7(x+4)+7x-10(x+4) / 7x*(x+4) = 0
7x+28+7x-10x-40 / 7x*(x+4) = 0
4x-12 / 7x*(x+4) = 0
4x-12=0
4x-=12
x=3,x=0,x=-4
x=3
Answer:
Step-by-step explanation:
1. 51 degrees
2. 90 degrees
3. 17 degrees
4. 107 degrees
5. 121 degrees
6. 68 degrees
<span>E[Y] = 0.4·1 + 0.3·2 + 0.2·3 + 0.1·4 = 2
E[1/Y] =0.4·1/1 + 0.3·1/2 + 0.2·1/3 + 0.1·1/4 = 0.4 + 0.15 + 0.0666 + 0.025?0.64
V[Y] =E[Y2]-E[Y]2= (0.4)·12+(0.3)·22+(0.2)·32+(0.1)·42-22= 0.4+1.2+1.8+1.6-4= 5-4 = 1</span>