Answer: I'm pretty sure I can help, just give me like 3 minutes..
-Angie
Hello!
To prove that f(x) = 2x - 1 and g(x) = x/2 + 1/2, we can use a composite function. Composite functions are basically (f ∘ g)(x). It combines two functions into one. If they are true inverses, then the answer must be equal to x.
(f ∘ g)(x) = 2(x/2 + 1/2) - 1
(f ∘ g)(x) = x + 1 - 1
(f ∘ g)(x) = x
(g ∘ f)(x) = (2x - 1)/2 + 1/2
(g ∘ f)(x) = x - 1/2 + 1/2
(g ∘ f)(x) = x
Since (g ∘ f)(x) and (f ∘ g)(x) are both equal to x, then the functions of f(x) and g(x) are inverses of each other.
Also, in order for two functions to be inverses, these two functions need to be reflected over the line y = x. In the graph shown below, y = x is in red, y = 2x - 1 is blue, and y = x/2 + 1/2 is green. Looking the graph, you can see they are reflected over the line y = x.
Therefore, the function f(x) = 2x - 1 and g(x) = x/2 + 1/2 are true inverses of each other.
Complementary angles add up to 90.
take away 76 from 90
Answer:
$904,510.28
Step-by-step explanation:
If we assume the withdrawals are at the beginning of the month, we can use the annuity-due formula.
P = A(1 +r/n)(1 -(1 +r/n)^(-nt))/(r/n)
where r is the APR, n is the number of times interest is compounded per year (12), A is the amount withdrawn, and t is the number of years.
Filling in your values, we have ...
P = $4000(1 +.034/12)(1 -(1 +.034/12)^(-12·30))/(.034/12)
P = $904,510.28
You need to have $904,510.28 in your account when you begin withdrawals.
Answer: The final answer in proper fraction is 169/9
Step-by-step explanation:
Given the expression
-6 4/9-3 2/9-82/9
Firstly let us convert all mixed fraction to proper fraction to further simplify the expression
-58/9 - 29/9 - 82/9
We now have all terms in proper fraction, we can continue by finding the LCM which is 9
= (- 58-29-82)/9
= 169/9