Photosynthetic organisms, also known as photoautotrophs, are organisms that are capable of photosynthesis. Some of these organisms include higher plants, some protists (algae and euglena), and bacteria.
Answer: Lets choose a food processing company for scientific study.
Explanation:
Scientific study is the study which involves taking observations on the samples being studied experimentally. Drawing evidences from observations to prove a scientific fact.
In a food based company, several scientific tests are required to be done to check the shelf-life, quality, quantity of the ingredients, and to check whether they are fit for consumption or not all of these parameters have to checked through experimental procedures.
Answer: zap70, ITAM.
Explanation:
An antigen is any substance that is capable of stimulating an immune response by activating lymphocytes, which are the body’s infection-fighting white blood cells. Examples of antigens could be proteins that are part of bacteria or viruses or components of serum and red blood cells from other individuals, all of them are foreign antigens originated outside the body. However, there can also be autoantigens (which are self-antigens), originated within the body. In normal conditions, the body is able to distinguish self from nonself. <u>And the antigens that represent a danger induces an immune response by stimulating the lymphocytes to produce antibody or to attack the antigen directly</u>. This is called an antigenic stimulation of the immune system.
ZAP-70 (Zeta-chain-associated protein kinase 70) is a protein that is part of the T cell receptor, thereby it plays a critical role in T-cell signaling. When the TCR (receptor of T cells) is activated by the presentation of the specific antigen through the MHC, a protein called Lck acts to phosphorylate the intracellular CD3 chains and the ζ chains of the TCR complex, allowing the binding of the cytoplasmic tyrosine kinase, ZAP-70. Lck then phosphorylates and activates ZAP-70, which in turn phosphorylates another molecule in the signaling cascade called LAT (short for Linker of Activated T cells), a transmembrane protein that serves as an anchor site for several other proteins. The tyrosine phosphorylation cascade initiated by the Lck culminates in the intracellular mobilization of calcium ion (Ca2+) <u>and the activation of important signaling cascades within the lymphocytes.</u> These include the Ras-MEK-ERK pathway, which is based on activating certain transcription factors such as NFAT, NFκB and AP-1. These transcription factors regulate the production of of certain gene products, most notably cytokines such as interleukin-2 that promote the long-term proliferation and differentiation of activated lymphocytes.
The ITAM motifs (immunoreceptor tyrosine-based activation motif) are sequences of four amino acids present in the intracellular tails of certain proteins that serve as receptors within the immune system. Thus, <u>some receptors such as the TCR have ITAM sequences that, when activated, trigger an intracellular reaction based on consecutive phosphorylations</u>. Kinases are recruited for this purpose.
So, ZAP-70 is a protein tyrosine kinase with a role in T-cell receptor signal transduction. During T-cell activation, ZAP-70 binds to ITAM and becomes tyrosine phosphorylated. The binding of ZAP-70 to the phosphorylated ITAM is able to activate its kinase activity, <u>and relieves the inhibition of the transcription factor which regulates genes that are involved in the immune reaction</u>.
Answer: The Heart
Explanation:
The blood circulatory system (cardiovascular system) delivers nutrients and oxygen to all cells in the body. It consists of the heart and the blood vessels running through the entire body. The arteries carry blood away from the heart; the veins carry it back to the heart. The system of blood vessels resembles a tree: The “trunk” – the main artery (aorta) – branches into large arteries, which lead to smaller and smaller vessels. The smallest arteries end in a network of tiny vessels known as the capillary network.
There are two types of blood circulatory system in the human body, which are connected: The systemic circulation provides organs, tissues and cells with blood so that they get oxygen and other vital substances. The pulmonary circulation is where the fresh oxygen we breathe in enters the blood. At the same time, carbon dioxide is released from the blood.
Blood circulation starts when the heart relaxes between two heartbeats: The blood flows from both atria (the upper two chambers of the heart) into the ventricles (the lower two chambers), which then expand. The following phase is called the ejection period, which is when both ventricles pump the blood into the large arteries.
In the systemic circulation, the left ventricle pumps oxygen-rich blood into the main artery (aorta). The blood travels from the main artery to larger and smaller arteries and into the capillary network. There the blood drops off oxygen, nutrients and other important substances and picks up carbon dioxide and waste products. The blood, which is now low in oxygen, is collected in veins and travels to the right atrium and into the right ventricle.
This is where pulmonary circulation begins: The right ventricle pumps low-oxygen blood into the pulmonary artery, which branches off into smaller and smaller arteries and capillaries. The capillaries form a fine network around the pulmonary vesicles (grape-like air sacs at the end of the airways). This is where carbon dioxide is released from the blood into the air inside the pulmonary vesicles, and fresh oxygen enters the bloodstream. When we breathe out, carbon dioxide leaves our body. Oxygen-rich blood travels through the pulmonary veins and the left atrium into the left ventricle. The next heartbeat starts a new cycle of systemic circulation. Below is an attachment of a diagram that explains the connection between pulmonary and systemic circulation from google.