The question is asking to states on how i earth's early lang environment different than today's land environment and base on my research, I would say that in the past centuries or early ages, the Earth's land environment are compost of tree and plants and the air is still fresh. I hope you are satisfied with my answer and feel free too ask for more
Answer:
- Oak trees: primary producers
- Caterpillars: primary consumers
- Blue Jays: secondary consumers
- Hawks: tertiary consumers
Explanation:
A trophic pyramid, also known as ecological pyramid or energy pyramid, is a graphic representation that shows the relationships between different types of organisms (i.e., producers and consumers) at the trophic levels of an ecosystem. The primary producers are autotrophic organisms that obtain energy from sunlight and chemical compounds from nonliving sources (e.g., photosynthetic plants, algae, etc). The primary consumers are organisms that eat primary producers (e.g., herbivores), while secondary consumers are organisms that eat primary consumers (e.g., omnivores). Moreover, tertiary consumers are predators and/or omnivores that eat secondary consumers (e.g., hawks). Finally, decomposers (e.g., bacteria) are organisms that obtain nutrients and energy by breaking down dead organic material (i.e., dead organisms) at all trophic levels into nutrients.
Answer:
Rate of product formation is linear and [S] has not been lowered significantly.
Explanation:
The rate of enzyme-catalyzed reactions is affected by several factors, the contraction of substrates [S] is one of them. The substrate concentration keeps on changing as the reaction proceeds. This is why the reaction rate is measured at the initial stages of reactions when the substrate concentration [S] is much greater than the concentration of the enzyme. It is called the initial rate or initial velocity.
Under the conditions of higher substrate concentration and relatively much lower enzyme concentrations, only a few molecules of substrates are being converted into product. At a relatively higher substrate concentration, the rate of product formation increases linearly.
Answer:
For example, delays in mitosis are often ascribed to 'activation' of the mitotic checkpoint, a descriptor that fails to recognize that the checkpoint by definition is active as the cell starts mitosis. Conversely, the completion of mitosis in the presence of misaligned chromosomes is often automatically interpreted to indicate a defective checkpoint, even though in the absence of critical testing alternative interpretations are equally likely. In this article, we define the critical characteristics of checkpoints and illustrate how confusion generated by the inconsistent use of terminology may impede progress by fostering claims that mean very different things to different researchers. We will illustrate our points with examples from the checkpoint that controls progression through mitosis
Explanation: