14-4x=2y
divide both sides by 2
7-2x=y
subsitute 7-2x for y
7-2x+2x=7
add like terms
7=7
true
therefor these 2 equations are the same and there are an infinite number of equations
answer is C
Answer:
1) 69.5
2) 678.6
Step-by-step explanation:
pi3^2=28.27*9=254.5 18*18=324-254.5=69.5
pi24^2=1809.6*.5=904.8 pi6^2=113.1*.5=56.55*4=226.2 904.8-226.2=678.6
We conclude that, if working at the same rate, to make 374 units, she needs to work for 17 hours.
<h3>
At the same rate, how many hours would she have to work to make 374?</h3>
We know that Mary makes 242 units of something in 11 hours of work, then her rate of work is:
R = (242 units)/(11 hours) = 22 units per hour.
Now, if she wants to make 374 units, then she needs to work for a time T, such that:
(22 units per hour)*T = 374 units.
Solving that linear equation for T, we get:
T = (374 units)/(22 units per hour) = 17 hours
We conclude that, if working at the same rate, to make 374 units, she needs to work for 17 hours.
If you want to learn more about linear equations:
brainly.com/question/1884491
#SPJ1
<h2>
Answer:</h2>
<h3>
<em>x=45degrees</em></h3>
<h2>
Step-by-step explanation:</h2>
Let the angle to be solved be x
Let the supplement/compliment by y
x+y=90 Complimentary angles add up to 90 degrees.
x+3y=180 Supplementary angles add up to 180 degrees, the other angle is thrice the other compliment.
Evaluating this as a system:
x+y=90 Isolate x:
x=90−y Input into the other equation:
(90−y)+3y=180 Combine like terms, isolate y and its coefficients:
2y=90 Isolate y
y=45 Input into the first equation:
x+45=90 Isolate x:
x=45degrees
Answer:
If corresponding vertices on an image and a preimage are connected with line segments, the line segments are divided equally by the line of reflection. That is, the perpendicular distance from the line of reflection to either of the corresponding vertices is the same. Line is a perpendicular bisector of the connecting line segments.
Step-by-step explanation: