Let Ch and C denote the events of a student receiving an A in <u>ch</u>emistry or <u>c</u>alculus, respectively. We're given that
P(Ch) = 88/520
P(C) = 76/520
P(Ch and C) = 31/520
and we want to find P(Ch or C).
Using the inclusion/exclusion principle, we have
P(Ch or C) = P(Ch) + P(C) - P(Ch and C)
P(Ch or C) = 88/520 + 76/520 - 31/520
P(Ch or C) = 133/520
Answer:
The second time when Luiza reaches a height of 1.2 m = 2 08 s
Step-by-step explanation:
Complete Question
Luiza is jumping on a trampoline. Ht models her distance above the ground (in m) t seconds after she starts jumping. Here, the angle is entered in radians.
H(t) = -0.6 cos (2pi/2.5)t + 1.5.
What is the second time when Luiza reaches a height of 1.2 m? Round your final answer to the nearest hundredth of a second.
Solution
Luiza is jumping on trampolines and her height above the levelled ground at any time, t, is given as
H(t) = -0.6cos(2π/2.5)t + 1.5
What is t when H = 1.2 m
1.2 = -0.6cos(2π/2.5)t + 1.5
0.6cos(2π/2.5)t = 1.2 - 1.5 = -0.3
Cos (2π/2.5)t = (0.3/0.6) = 0.5
Note that in radians,
Cos (π/3) = 0.5
This is the first time, the second time that cos θ = 0.5 is in the fourth quadrant,
Cos (5π/3) = 0.5
So,
Cos (2π/2.5)t = Cos (5π/3)
(2π/2.5)t = (5π/3)
(2/2.5) × t = (5/3)
t = (5/3) × (2.5/2) = 2.0833333 = 2.08 s to the neareast hundredth of a second.
Hope this Helps!!!
Answer:
A on edge
Step-by-step explanation:
Answer:
1. 0.8 cm
2. 1.6 cm
Step-by-step explanation:
1.
The scale for 2nd map is 1 cm to 50 km, that means "1 cm on map" is "50 km in real life".
We already know distance from Cleveland to Cincinnati is 40 km, which is less than 50, so we know the distance on map would be less than 1 cm.
So we set up ratio and figure out (let x be distance on map from Cleveland to Cincinnati):

Hene, 0.8 centimeters would be the distance in 2nd map
2.
A scale of 1:50 means 1 cm equal 50 cm
So, 0.8m would be
0.8 * 100 = 80 cm
Hence, 80 cm would be represented by 80/50 on the map, that is:

That is 1.6 centimeters