Step-by-step explanation:
The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
How to determine the value of sin(2x)
The cosine ratio is given as:
\cos(x) = -\frac 14cos(x)=−
4
1
Calculate sine(x) using the following identity equation
\sin^2(x) + \cos^2(x) = 1sin
2
(x)+cos
2
(x)=1
So we have:
\sin^2(x) + (1/4)^2 = 1sin
2
(x)+(1/4)
2
=1
\sin^2(x) + 1/16= 1sin
2
(x)+1/16=1
Subtract 1/16 from both sides
\sin^2(x) = 15/16sin
2
(x)=15/16
Take the square root of both sides
\sin(x) = \pm \sqrt{15/16
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
\sin(x) = -\sqrt{15/16
Simplify
\sin(x) = \sqrt{15}/4sin(x)=
15
/4
sin(2x) is then calculated as:
\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)
So, we have:
\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗
4
15
∗
4
1
This gives
\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
Answer:
m∠BFE = 171º
BE = 219º
Step-by-step explanation:
∠BFE is supplementary to ∠EFC
m∠BFE = 180 - 9
m∠BFE = 171º
--------------------------
The angle between two chords is equal to half the sum of the intercepted arcs:
∠BFE = (DC + BE)2
171 = (123 + BE)/2
342 = 123 + BE
219º = BE
Answer:
(-5, 0) ∪ (5, ∞)
Step-by-step explanation:
I find a graph convenient for this purpose. (See below)
__
When you want to find where a function is increasing or decreasing, you want to look at the sign of the derivative. Here, the derivative is ...
f'(x) = 4x^3 -100x = 4x(x^2 -25) = 4x(x +5)(x -5)
This has zeros at x=-5, x=0, and x=5. The sign of the derivative will be positive when 0 or 2 factors have negative signs. The signs change at the zeros. So, the intervals of f' having a positive sign are (-5, 0) and (5, ∞).
C = 10m + 30, where C is total cost and m is # of months
C = 10(5) + 30
C = 50 + 30
C = $80
$160 = 10m + 30
160 - 30 = 10m
130/10 = m
m = 13 months
Hope that helps
Answer:
A yes
Step-by-step explanation:
you use the pythagorean theorem