Since 1/2=0.5 and 1/8=0.125, we have 2.5, 2.4, 2.35, and 2.125. The first number we look for is the one to the left, and they're all the same, so that doesn't necessarily help. Next, we have a 5, 4, 3, and 1. They're already in order from greatest to least, so that's awesome!
Answer:
(A) ![A=\left[\begin{array}{ccc}10&20&40\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D)
(B) ![B=\left[\begin{array}{ccc}11&22&44\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D)
(C) ![A+B=\left[\begin{array}{ccc}21&42&84\end{array}\right]](https://tex.z-dn.net/?f=A%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%2642%2684%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The manager ordered 10 lb of tomatoes, 20 lb of zucchini, and 40 lb of onions from a local farmer one week.
(A)
Matrix <em>A</em> represents the amount of each item ordered. It is 1 × 3 matrix.
Then matrix <em>A</em> is:
![A=\left[\begin{array}{ccc}10&20&40\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D)
(B)
Next week the manager increases the order of all the products by 10%.
Then the amount of new orders are:
Tomatoes ![=10\times [1+\frac{10}{100}]=10\times1.10=11](https://tex.z-dn.net/?f=%3D10%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D10%5Ctimes1.10%3D11)
Zucchini ![=20\times [1+\frac{10}{100}]=20\times1.10=22](https://tex.z-dn.net/?f=%3D20%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D20%5Ctimes1.10%3D22)
Onions ![=40\times [1+\frac{10}{100}]=40\times1.10=44](https://tex.z-dn.net/?f=%3D40%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D40%5Ctimes1.10%3D44)
Th matrix <em>B</em> represents the amount of each order for the next week. Then matrix <em>B</em> is:
![B=\left[\begin{array}{ccc}11&22&44\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D)
(C)
Add the two matrix <em>A</em> and <em>B</em> as follows:
![A+B=\left[\begin{array}{ccc}10&20&40\end{array}\right]+\left[\begin{array}{ccc}11&22&44\end{array}\right]\\=\left[\begin{array}{ccc}(10+11)&(20+22)&(40+44)\end{array}\right]\\=\left[\begin{array}{ccc}21&42&84\end{array}\right]](https://tex.z-dn.net/?f=A%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%2810%2B11%29%26%2820%2B22%29%26%2840%2B44%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%2642%2684%5Cend%7Barray%7D%5Cright%5D)
The entries of the matrix (<em>A</em> + <em>B</em>) represent the amount of tomatoes, zucchini and onions ordered for two weeks.
Answer:
0.67% probability he will have to shut down after this month
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given time interval.
On average sells 8.9 machines per month.
So 
Using the Poisson distribution, what is the probability he will have to shut down after this month
If he sells less than 3 machines.






0.67% probability he will have to shut down after this month
Answer:9?
Step-by-step explanation: hair