1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sattari [20]
3 years ago
8

If 4x + y = 13 - y = 2 then y =

Mathematics
2 answers:
ira [324]3 years ago
6 0

Answer:

y = 2

Step-by-step explanation:

-y = 2, that means y = opposite of 2, which is -2

<em>Hope that helps! :)</em>

spin [16.1K]3 years ago
5 0
4x + y = 13
- y = 2

y = -2
You might be interested in
Suhana's father is a farmer. He deposits Rs.1200 of the remaining amount in the bank at 9% p.a. for 3 yrs
MrRa [10]

Answer:

Given :principle =Rs. 1200

rate of interest =9%

time =3yrs

we know that simple interest =PTR /100

=1200*9*3/100

=Rs. 324

Amount of the farmer will receive at the end of the 3 yrs =principle + interest

=1200+324=1524/-

3 0
3 years ago
I'm very confused on what to do :/
enyata [817]

\sqrt{99w^5m^3}

\sqrt{99} \sqrt{w^5m^3}

\sqrt{99}=3\sqrt{11}

=3\sqrt{11}\sqrt{w^5m^3}

Hope this helps!

Thanks!

-Charlie

7 0
3 years ago
Read 2 more answers
Mar 19, 1:51:44 PM
saveliy_v [14]

Answer:

selected variable divided by total

variables

4/29

4 0
3 years ago
Help a girl out <br> it’s due tonight i’m dead
3241004551 [841]
I’m pretty sure it’s y = -x +3 :)
4 0
2 years ago
Read 2 more answers
Evaluate the triple integrals below where E is the solid tetrahedron with vertices (0,0,0), (1,0,0), (0,2,0) and (0,0,3). I need
Korvikt [17]
Hi, We can to calculate the vectors.

And the determinant will be the plan Z

Let  A = (0,03), B =(0,2,0) , C = (1,0,0) and D = (0,0,0)

Then,

AB = B - A

Replacing the points:

AB = (0,2,0) - (0,0,3)

AB = (0i, 2j , -3k)
----------------------------

Already the vector AC = C -A

That's is,

AC = (1,0,0) - (0,0,3)

AC = (1i, 0j, -3k)

Then,

The plan = \left[\begin{array}{ccc}x&y&z\\0&2&-3\\1&0&-3\end{array}\right]

Solving it, we will have:

Plan:  -6x -3y -2z + d = 0

Replacinng any point to find the value of d

Example the point A =(0,0,3)

-6(0) -3(0) -2(3) + d = 0

-6+d = 0

d = 6

Then, The us equation will stay of form following :

-6x -3y -2z +6 = 0

or

6x + 3y +2z -6 = 0

Isolating 2z:

2z = 6 -6x - 3y

Dividing both the sides od equation by 2

z = 3 - 3x - 3y/2

Then,

0  \leq  Z  \leq  3-3x- \frac{3y}{2}

Now, Let's find the <span>domain in xy
</span>
|y
|  (0,2)
|\
|  \
|    \
|       \  (1,0)    
------------------------- x


b = Cut in y

then b will be = 2

As y = ax + b

y = ax + 2

We have the point = (1,0)

Replace in the equation

0 = a(1) + 2

0 = a + 2

Isolate a

a = -2

Then us stay:

y = -2x + 2


0  \leq  y  \leq  -2x+2

-------------------------------------

With  ,


0  \leq  x  \leq  1

----------------------------------------


\\ \int\limits^1_0 {} \,  \int\limits^ \frac{-2x+2}{} _0 {} \,  \int\limits^ \frac{3-3x- \frac{3y}{2} }{} _0 {(xy)} \, dzdydx&#10; \\ &#10; \\ =\int\limits^1_0 {} \,  \int\limits^ \frac{-2x+2}{} _0 {} \,(3xy -3x^2y - \frac{3xy^2}{2} )dydx&#10; \\ &#10; \\ =\int\limits^1_0 {} \, ( \frac{3xy^2}{2} - \frac{3x^2y^2}{2} - \frac{3xy^3}{6} )|0,(-2x+2)dx&#10; \\ &#10; \\ =  \int\limits^1_0 {(\frac{3x(-2x+2)^2}{2} - \frac{3x^2(-2x+2)^2}{2} - \frac{3x(-2x+2)^3}{6} )} \, dx &#10;

Now putting 3x/2(-2x+2)²  as commu factor

\\ =  \int\limits^1_0 {(\frac{3x(-2x+2)^2}{2} - \frac{3x^2(-2x+2)^2}{2} - \frac{3x(-2x+2)^3}{6} )} \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[ 1- x- \frac{1}{3} (-2x+2)] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[ 1- x+ \frac{2x}{3} - \frac{2}{3} ] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[  \frac{1}{3}  - \frac{x}{3}] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2( \frac{1-x}{3} ) } \, dx &#10;&#10;

\\  =  \int\limits^1_0 { \frac{x}{2}(-2x+2)^2(1-x) } \, dx &#10; \\ &#10; \\ =   \int\limits^1_0 { \frac{x}{2}(4x^2-8x+4)(1-x) } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 {(2x^3-4x^2+2x) (1-x) } \, dx &#10; \\ &#10; \\ = \int\limits^1_0 {(-2x^4+4x^3-2x^2+2x^3-4x^2+2x)} \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 {(-2x^4+6x^3-6x^2+2x)} \, dx &#10; \\ &#10; \\ =  -\frac{2x^5}{5} + \frac{6x^4}{4} - \frac{6x^3}{3} + \frac{2x^2}{2} |(0,1)&#10; \\ &#10; \\ =  -\frac{2}{5} + \frac{6}{4} - \frac{6}{3} + \frac{2}{2}&#10;

\\ =-\frac{2}{5} + \frac{3}{2} - 2 + \frac{2}{2}&#10; \\ &#10; \\ = -\frac{2}{5} -2+ \frac{3+2}{2} &#10; \\ &#10; \\ = -\frac{2}{5} -2 + 5/2 \\ &#10; \\ =  \frac{1}{10} u.v
5 0
3 years ago
Other questions:
  • Write the ratio 21 inches to 9 free as a fraction in simplest form​
    13·1 answer
  • The function y = [x] is defined as follows: for any input x, the output is the smallest integer that is greater than or equal to
    11·1 answer
  • What is 18/21 simplest form
    9·2 answers
  • Two cylinders. The smaller cylinder has height labeled as 6 cm. The larger cylinder has height labeled as 18 cm. The cylinders a
    9·2 answers
  • It took Bane one hour to ride 5.75 miles on his bicycle. How far will Bane
    11·1 answer
  • Find the area 20 points!!!
    10·2 answers
  • Use proportional reasoning to determine the value of a in the proportion shown below.
    10·1 answer
  • Can someone help me with this please?
    11·1 answer
  • Can you help me plsssssssssss
    9·2 answers
  • In ΔXYZ, ∠Y=90° and ∠X=73°. ∠ZWY=80° and XW=80. Find the length of ZY to the nearest 100th
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!