Answer:
$.56
Step-by-step explanation:
To find the cost of one pen, take the total cost and divide by the number of pens
$1.68/ 3
$.56 per pen
The answer is 2,320 seats in the amphitheater. Since the seats are increasing at a rate of 4 more seats each row, then just add 4 to the number for each past row starting at 32 since that's where the rest is unknown. Once you find all he numbers just add them up to get your answer.
I hope I helped!
im pretty sure you got it right with 40!!
Answer:
a) 
b) 0.0620
Step-by-step explanation:
We are given the following in the question:
Population mean,
= 6
Variance,
= 12
a) Value of 
We know that

Dividing the two equations, we get,

b) probability that on any given day the daily power consumption will exceed 12 million kilowatt hours.
We can write the probability density function as:

We have to evaluate:
![P(x >12)\\\\= \dfrac{1}{16}\displaystyle\int^{\infty}_{12}f(x)dx\\\\=\dfrac{1}{16}\bigg[-2x^2e^{-\frac{x}{2}}-2\displaystyle\int xe^{-\frac{x}{2}}dx}\bigg]^{\infty}_{12}\\\\=\dfrac{1}{8}\bigg[x^2e^{-\frac{x}{2}}+4xe^{-\frac{x}{2}}+8e^{-\frac{x}{2}}\bigg]^{\infty}_{12}\\\\=\dfrac{1}{8}\bigg[(\infty)^2e^{-\frac{\infty}{2}}+4(\infty)e^{-\frac{\infty}{2}}+8e^{-\frac{\infty}{2}} -( (12)^2e^{-\frac{12}{2}}+4(12)e^{-\frac{12}{2}}+8e^{-\frac{12}{2}})\bigg]\\\\=0.0620](https://tex.z-dn.net/?f=P%28x%20%3E12%29%5C%5C%5C%5C%3D%20%5Cdfrac%7B1%7D%7B16%7D%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_%7B12%7Df%28x%29dx%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B16%7D%5Cbigg%5B-2x%5E2e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D-2%5Cdisplaystyle%5Cint%20xe%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7Ddx%7D%5Cbigg%5D%5E%7B%5Cinfty%7D_%7B12%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B8%7D%5Cbigg%5Bx%5E2e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%2B4xe%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%5Cbigg%5D%5E%7B%5Cinfty%7D_%7B12%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B8%7D%5Cbigg%5B%28%5Cinfty%29%5E2e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%2B4%28%5Cinfty%29e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%20-%28%20%2812%29%5E2e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%2B4%2812%29e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%29%5Cbigg%5D%5C%5C%5C%5C%3D0.0620)
0.0620 is the required probability that on any given day the daily power consumption will exceed 12 million kilowatt hours.
Ighty thanks ;;;;;;))))))