First we need to determine what the 6 angles must add to. Turns out we use this formula
S = 180(n-2)
where S is the sum of the angles (result of adding them all up) and n is the number of sides. In this case, n = 6. So let's plug that in to get
S = 180(n-2)
S = 180(6-2)
S = 180(4)
S = 720
The six angles, whatever they are individually, add to 720 degrees. The six angles are y, y, 2y-20, 2y-20, 2y-20, 2y-20, <span>
They add up and must be equal to 720, so let's set up the equation to get...
(y)+(y)+(</span>2y-20)+(2y-20)+(2y-20)+(<span>2y-20) = 720
Let's solve for y
</span>y+y+2y-20+2y-20+2y-20+2y-20 = 720
10y-80 = 720
10y-80+80 = 720+80
<span>10y = 800
</span>
10y/10 = 800/10
y = 80
Now that we know the value of y, we can figure out the six angles
angle1 = y = 80 degrees
<span>angle2 = y = 80 degrees
</span><span>angle3 = 2y-20 = 2*80-20 = 140 degrees
</span>angle4 = 2y-20 = 2*80-20 =<span> 140 degrees
</span><span>angle5 = 2y-20 = 2*80-20 = 140 degrees
</span>angle6 = 2y-20 = 2*80-20 =<span> 140 degrees
</span>
and that's all there is to it
Answer:
a because I dont know why but some one told me it was this
You know vertical Angles SRU and TRV are congruent.
You are given that Sides UR and VR are congruent.
You are given that Angles SUT and SVT are congruent.
An appropriate choice is the ASA postulate, since you have congruent angles with congruent sides in between.
Answer: b is the answer
Step-by-step explanation: