Answer:
b1 = 2 ; r = 3
Step-by-step explanation:
Given that :
if b3 −b1 = 16 and b5 −b3 = 144.
For a geometric series :
Ist term = a
Second term = ar
3rd term = ar^2
4th term = ar^3
5th term = ar^4 ;...
If b3 - b1 = 16;
ar^2 - a = 16
a(r^2 - 1) = 16 - - - (1)
b5 - b3 = 144
ar^4 - ar^2 = 144
ar^2(r^2 - 1) = 144 - - - - (2)
Divide (1) by (2)
a(r^2 - 1) / ar^2(r^2 - 1) = 16 /144
a / ar^2 = 1 / 9
ar^2 = 9a
Substitute for a in ar^2 - a = 16
9a - a = 16
8a = 16
a = 2
From ar^2 - a = 16
2r^2 - 2 = 16
2r^2 = 16 + 2
2r^2 = 18
r^2 = 18 / 2
r^2 = 9
r = √9
r = 3
Hence ;
a = b1 = 2 ; r = 3
The experimental probability is the number of specific outcomes divided by the sample size...
P(6)=27/100 (27%)
P(H)=41/100 (41%)
Not sure, but if you meant rolling a 6 AND getting a head then:
P(6 AND H)=(27/100)(41/100)=1107/10000 (11.07%)
If f(x) has an inverse on [a, b], then integrating by parts (take u = f(x) and dv = dx), we can show

Let
. Compute the inverse:
![f\left(f^{-1}(x)\right) = \sqrt{1 + f^{-1}(x)^3} = x \implies f^{-1}(x) = \sqrt[3]{x^2-1}](https://tex.z-dn.net/?f=f%5Cleft%28f%5E%7B-1%7D%28x%29%5Cright%29%20%3D%20%5Csqrt%7B1%20%2B%20f%5E%7B-1%7D%28x%29%5E3%7D%20%3D%20x%20%5Cimplies%20f%5E%7B-1%7D%28x%29%20%3D%20%5Csqrt%5B3%5D%7Bx%5E2-1%7D)
and we immediately notice that
.
So, we can write the given integral as

Splitting up terms and replacing
in the first integral, we get

Answer:
all...
Step-by-step explanation: