Answer:
So i just used the calculator to help me find the two co exisiting lines and then worked my way up to find the nearest decimal to fit the equation for the missing parablar length which was parallel to find the cointerior angle which lead me to get a decimal number involving an ordinary form number.
Answer:
The statement that is not true is;
c) m∠ABO = m∠ODC
Step-by-step explanation:
With the assumption that the lengths AO, and OD are equal, we have that in ΔABO and ΔOCD, the following sides are corresponding sides;
Segment AO on ΔABO is a corresponding side to segment OD on ΔOCD
Vertices B and C on ΔABO and ΔOCD are corresponding vertices
Therefore;
Segments AB and OB on ΔABO are corresponding sides to segments OC and OD on ΔOCD respectively
Therefore, ∠ABO on ΔABO is the corresponding angle to ∠OCD on ΔOCD
Given that ΔABO ≅ ΔOCD, we have that ∠ABO ≅ ∠OCD
Therefore;
m∠ABO = m∠OCD by definition of congruency
<h2>
Perfect Squares</h2>
Perfect square formula/rules:
Trinomials are often organized like
.
The <em>b</em> value in this case is <em>c</em>, and it will always equal the square of half of the <em>b</em> value.
- Perfect square trinomial:

- or

<h2>Solving the Question</h2>
We're given:
In a trinomial, we're given the
and
values. <em>a</em> in this case is 1 and <em>b</em> in this case is 4. To find the third value by dividing 4 by 2 and squaring the quotient:
Therefore, the term that we can add is + 4.

To write this as the square of a bracketed expression, we can follow the rule
:

<h2>Answer</h2>


We have the triangle 30° - 60° - 90°.
The lenght of the sides are in proportion: 
