1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ludmilka [50]
3 years ago
13

Just need help 1-3 because it’s not easy

Mathematics
1 answer:
neonofarm [45]3 years ago
7 0
1 Yes
2 No
3 No
Hope this helps
You might be interested in
Math<br><br><br><br> pls help!!<br><br><br><br><br><br> answers?
statuscvo [17]

Answer: Choice B) Infinitely many solutions

  • one solution: x = 8, y = -7/2, z = 0
  • another solution: x = -12, y = 13/2, z = 10

=======================================================

Explanation:

Here's the starting original augmented matrix.

\left[\begin{array}{ccc|c}  1 & 0 & 2 & 8\\5 & 1 & 9 & 73/2\\-4 & 0 & -8 & -32\\\end{array}\right]

We'll multiply everything in row 3 (abbreviated R3) by the value -1/4 or -0.25, which will make that -4 in the first column turn into a 1.

We use this notation to indicate what's going on: (-1/4)*R3 \to R3

That notation says "multiply everything in R3 by -1/4, then replace the old R3 with the new corresponding values".

So we have this next step:

\left[\begin{array}{ccc|c}  1 & 0 & 2 & 8\\5 & 1 & 9 & 73/2\\1 & 0 & 2 & 8\\\end{array}\right]\begin{array}{l}  \ \\\ \\(-1/4)*R3 \to R3\\\end{array}

Notice that the new R3 is perfectly identical to R1.

So we can subtract rows R1 and R3, and replace R3 with the result of nothing but 0's

\left[\begin{array}{ccc|c}  1 & 0 & 2 & 8\\5 & 1 & 9 & 73/2\\0 & 0 & 0 & 0\\\end{array}\right]\begin{array}{l}  \ \\\ \\R3-R1 \to R3\\\end{array}

Whenever you get an entire row of 0's, it <u>always</u> means there are infinitely many solutions.

-------------------

Now let's handle the second row. That 5 needs to turn into a 0. We can multiply R1 by 5, and subtract that from R2.

So we need to compute 5*R1-R2 and have that replace R2.

\left[\begin{array}{ccc|c}  1 & 0 & 2 & 8\\0 & 1 & -1 & -7/2\\0 & 0 & 0 & 0\\\end{array}\right]\begin{array}{l}  \ \\5*R1-R2 \to R2\ \\\ \\\end{array}

Notice that in the third column of R2, we have 9-5*2 = 9-10 = -1. So we have -1 replace the 9. In the fourth column of R2, we have 73/2 - 5*8 = -7/2. So the -7/2 replaces the 73/2.

--------------------

At this point, the augmented matrix is in RREF form. RREF stands for Reduced Row Echelon Form. It seems a bit odd that the "F" of "RREF" stands for "form" even though we say "form" right after "RREF", but I digress.

Because the matrix is in RREF form, this means R1 and R2 lead to these equations:

R1 : 1x+0y+2z = 8\\ R2: 0z+1y-1z = -7/2

which simplify to

R1: x+2z = 8\\R2: y-z = -7/2

Let's get the z terms to each side like so:

x+2z = 8\\x = -2z+8\\\text{ and }\\y-z = -7/2\\y = z-7/2\\

Therefore, all of the solutions are of the form (x,y,z) = (-2z+8, z-7/2, z) where z is any real number.

If z is allowed to be any real number, then we can simply pick any number we want to replace it. We consider z to be the "free variable", in that it's free to be whatever it wants. The values of x and y will depend on what we pick for z.

So the concept of "infinitely many solutions" doesn't exactly mean we can pick just <em>any</em> triple for x,y,z (admittedly it would be nice to randomly pick any 3 numbers off the top of my head and be done right away). Instead, we can pick anything we want for z, and whatever we picked, will directly determine x and y. The x and y are locked into place so to speak.

Let's say we picked z = 0.

That would lead to...

x = -2z+8\\x = -2(0)+8\\x = 8\\\text{ and }\\y = z-7/2\\y = 0-7/2\\y = -7/2\\

So z = 0 would lead to x = 8 and y = -7/2

Rearranging the items in alphabetical order gets us:

x = 8, y = -7/2, z = 0

We have one solution of (x,y,z) = (8, -7/2, 0)

Now let's say we picked z = 10

x = -2z+8\\x = -2(10)+8\\x = -12\\\text{ and }\\y = z-7/2\\y = 10-7/2\\y = 13/2\\

So we have x = -12, y = -13/2, z = 10

Another solution is (x,y,z) = (-12, 13/2, 10)

There's nothing special about z = 0 or z = 10. You can pick any two real numbers you want for z. Just be sure to recalculate the x and y values of course.

To verify each solution, you'll need to plug them back into the original equations formed by the original augmented matrix. After simplifying, you should get the same thing on both sides.

8 0
3 years ago
X + (-x) = 0 help me plz​
andriy [413]

x+-x = 0

x-x = 0

0 = 0

infintely many solutions

7 0
2 years ago
What is the expanded form for 298.2?
nydimaria [60]
200+90+8+.02 is the correct answer
4 0
3 years ago
In order to join an online learning community there is a $20 start up fee and a $5 monthly fee write an equation in slope interc
faust18 [17]
100 20 x 5 Try That!!
6 0
3 years ago
Which arrangement for these numbers is from least to greatest?
laiz [17]

Answer: D) -5/6 < -3/5 < -4/7 < -4/9

Step-by-step explanation:

Since putting fractions from least to greatest by using negatives the number or fraction has to be closed to 0. -5/6 is the farthest from 0 so it'll be the least -4/9 is closes to 0 so -4/9 is the most.

8 0
3 years ago
Other questions:
  • Help n explain pleaseee ​
    10·2 answers
  • What is the mode of the data set below?<br> 32,13 14, 45, 56, 14
    10·2 answers
  • If pentagon ABCDE is rotated 180 degrees around the origin to create pentagon A’B’C’D’E’, what is the ordered pair of point A’?
    11·1 answer
  • 120,395 as a prrcent
    15·1 answer
  • What’s number 11 (same directions as below)
    15·1 answer
  • Please find the slope! thanks
    14·2 answers
  • Hi if someone can answer the top one I’ll mark u brainliest thanks
    13·2 answers
  • PLEASE HELP ME ITS DUE IN 4 HOURS!!
    7·1 answer
  • Find the missing side length.
    5·1 answer
  • Please help me I'm being timed ​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!