1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlekseyPX
3 years ago
7

ADULT

Mathematics
1 answer:
Scilla [17]3 years ago
3 0

Answer:

£1.62

Step-by-step explanation:

add them all up then subtract 100 and forget about the negative sign

You might be interested in
Henry went clothes shopping and bought 3 pairs of shorts for $22.99 each, 2
Taya2010 [7]

Answer:

$190

Step-by-step explanation:

22.99 times 3 = 66.97

32.99 times 2 = 65.98

one pair of shoes is 54.99.

66.97 + 65.98 + 54.99 = 187.94

187.94 is closer to 190

6 0
3 years ago
El area del cuadrado mide 25 pies cuadrados cuál es la longitud de un lado del cuadrado?
Anna [14]
Sabiendo que el área del cuadrado cuyos lados miden (cada uno) "a" es igual a "a²" (A=a²), simplemente sustituimos el área por 625 m² y resolvemos la ecuación: 

<span>a² = 625 m² --> a = √(625 m²) --> a = 25m </span>

<span>Solución: Cada lado mide 25 metros. </span>


<span>Explicación de por qué el área del cuadrado con lados de longitud "a" es "a²": </span>
<span>El área de cualquier cuadrilátero es igual a la base por la altura de éste. Siendo en el cuadrado todos los lados iguales, la base y la altura también son iguales. Por lo tanto, el área del cuadrado sera el siguiente: </span>
<span>Área = Base x Altura = a x a = a² </span>

<span>¡Saludos!</span>
7 0
3 years ago
adult tickets for the fall play cost $6 and students cost $3. the drama club so 25% more students tickets than adult tickets to
Anton [14]
S = the number of student tickets sold a = the number of adult tickets sold The drama class sold 25 more student tickets than adult tickets to the fall play s = a + 25 The class collected $660 from ticket sales: 6s + 3a = 660 divide both sides by 3 2s + a = 220 by solving the system of equations s = a + 25 2s + a = 220 we find s = 81.67 student tickets a = 56.67 adult tickets

I hope this helps you! Let me know if you have any more questions. If possible please check my page for my question! 


4 0
3 years ago
In the diagram abc=adb=90, ad=p and dc=q. Use similar triangles to show that x2=pz<br> plzz anyoneee
kramer

Answer:

By comparing the ratios of sides in similar triangles ΔABC and ΔADB,we can say that x^{2} =pz

Step-by-step explanation:

Given that ∠ABC=∠ADC, AD=p and DC=q.

Let us take compare Δ ABC and  Δ ADB in the attached file , ∠A is common in both triangles

                                                                     and given ∠ABC=∠ADB=90°

Hence using AA postulate, ΔABC ≈ ΔADB.

Now we will equate respective side ratios in both triangles.

\frac{AB}{AC}= \frac{AD}{AB}=\frac{BD}{BC}

Since we don't know BD , BC let us take first equality and plugin the variables given in respective sides.

\frac{x}{z}= \frac{p}{x}

Cross multiply

x^{2}=pz

Hence proved.


7 0
3 years ago
Solve the following congruence equations for X a) 8x = 1(mod 13) b) 8x = 4(mod 13) c) 99x = 5(mod 13)
xxMikexx [17]

Answer:

a) 5+13k  where k is integer

b) 20+13k where k is integer

c)12+13k where k is integer

Step-by-step explanation:

(a)

8x \equiv 1 (mod 13) \text{ means } 8x-1=13k.

8x-1=13k

Subtract 13k on both sides:

8x-13k-1=0

Add 1 on both sides:

8x-13k=1

I'm going to use Euclidean Algorithm.

13=8(1)+5

8=5(1)+3

5=3(1)+2

3=2(1)+1

Now backwards through the equations:

3-2=1

3-(5-3)=1

3-5+3=1

(8-5)-5+(8-5)=1

2(8)-3(5)=1

2(8)-3(13-8)=1

5(8)-3(13)=1

So compare this to:

8x-13k=1

We see that x is 5 while k is 3.

Anyways 5 is a solution or 5+13k is a solution where k is an integer.

b)

8x \equiv 4 (mod 13)

8x-4=13k

Subtract 13k on both sides:

8x-13k-4=0

Add 4 on both sides:

8x-13k=4

We got this from above:

5(8)-3(13)=1

If we multiply both sides by 4 we get:

8(20)-13(12)=4

So x=20 and 20+13k is also a solution where k is an integer.

c)

[tex]99x \equiv 5 (mod 13)[/tex

99x-5=13k

Subtract 13k on both sides:

99x-13k-5=0

Add 5 on both sides:

99x-13k=5

Using Euclidean Algorithm:

99=13(7)+8

13=8(1)+5

Go back through the equations:

13-8=5

13-(99-13(7))=5

8(13)-99=5

99(-1)+8(13)=5

Compare this to 99x-13k=5 and see that x=-1 or -1+13=12 or 12+13k is a solution where k is an integer.

8 0
3 years ago
Read 2 more answers
Other questions:
  • I don’t know if this is correct !!!! Please answer correctly !!!!!!!! Will mark brainliest !!!!!!!!!!!
    5·1 answer
  • 4x + 5 = x + 26​ need help
    7·1 answer
  • In a certain supermarket, a sample of 60 customers who used a self-service checkout lane averaged 5.2 minutes of checkout time,
    13·1 answer
  • What is the word form for 1,000,000
    15·2 answers
  • Pete is making decorations for a dinner party.The instructions tell him to use 9 flowers for a medium-sized decoration.Complete
    10·1 answer
  • Help please!!!
    15·1 answer
  • x 3 9 13 20 y 9 27 39 60 state whether the relationship between the varibles in the table is a direct variation an inverse varia
    8·1 answer
  • When adding decimals with the same sign you.....​
    9·2 answers
  • PLEASE HELP 50 yd.=_ in. 48ft.=_yd. Thanks!!!!!!
    14·2 answers
  • Triangle ABC is similar to triangle DEF with a ratio of 3/5 If the difference of their
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!