Answer:
The Hardy-Weinberg law states that in a sufficiently large population, in which matings occur randomly and that is not subject to mutation, selection or migration, gene and genotypic free frequencies are kept constant from one generation to another, once a state of equilibrium has been reached, which in autosomal loci is reached after one generation.
It is said that a population is in equilibrium when the alleles of the polymorphic systems maintain their frequency in the population throughout the generations.
First, let's find the angle of inclination using the tangent function.
sin θ = opposite/hypotenuse = 1 m/2 m
θ = 30°
Assuming the ramp is frictionless, the force balance is:
F = mgsinθ = ma
Cancelling out m,
a = gsinθ = (9.81 m/s²)(sin 30°) = 4.905 m/s²
Using the equation for rectilinear motion at constant acceleration,
x = v₀t + 0.5at²
2 m = (6 m/s)(t) + 0.5(4.905 m/s²)(t²)
Solving for tm
t = 0.297 seconds
Using the equation for acceleration:
a = (v - v₀)/t
4.905 m/s² = (v - 6 m/s)/0.297 s
Solving for v,
v = 7.46 m/s
FISH levels and low estrogen levels.
<span>The accessory pigment found in red algae that are especially good at absorbing blue light is </span>Chlorophyll