5 pieces. 4.65÷0.85=5. so u divide and ur answer is 5
slope = (25-4)/(30-10)
slope = 21/20
slope =21/20
using point slope form
y-y1 = m(x-x1)
y-4 = 21/20 (x-10)
y = 21/20x -21/2 +4
y = 21/20 x -21/2 +8/2
y = 21/20x -13/2
let x=40
y = 21/20 (40) -13/2
y = 42-13/2
y = 35.5 games
If we round the slope to 1
slope =1
using point slope form
y-y1 = m(x-x1)
y-4 = 1 (x-10)
y = 1x -10 +4
y = x -6
let x=40
y = 40-6
y = 34 games
Answer:
The monopolist's net profit function would be:

Step-by-step explanation:
Recall that perfect price discrimination means that the monopolist would be able to get the maximum price that consumers are willing to pay for his products.
Therefore, if the demand curve is given by the function:

P stands for the price the consumers are willing to pay for the commodity and "y" stands for the quantity of units demanded at that price.
Then, the total income function (I) for the monopolist would be the product of the price the customers are willing to pay (that is function P) times the number of units that are sold at that price (y):

Therefore, the net profit (N) for the monopolist would be the difference between the Income and Cost functions (Income minus Cost):

Answer:
51/4
Step-by-step explanation:
To begin with you have to understand what is the distribution of the random variable. If X represents the point where the bus breaks down. That is correct.
X~ Uniform(0,100)
Then the probability mass function is given as follows.

Now, imagine that the D represents the distance from the break down point to the nearest station. Think about this, the first service station is 20 meters away from city A, and the second station is located 70 meters away from city A then the mid point between 20 and 70 is (70+20)/2 = 45 then we can represent D as follows

Now, as we said before X represents the random variable where the bus breaks down, then we form a new random variable
,
is a random variable as well, remember that there is a theorem that says that
![E[Y] = E[D(X)] = \int\limits_{-\infty}^{\infty} D(x) f(x) \,\, dx](https://tex.z-dn.net/?f=E%5BY%5D%20%3D%20E%5BD%28X%29%5D%20%3D%20%5Cint%5Climits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20D%28x%29%20f%28x%29%20%5C%2C%5C%2C%20dx)
Where
is the probability mass function of X. Using the information of our problem
![E[Y] = \int\limits_{-\infty}^{\infty} D(x)f(x) dx \\= \frac{1}{100} \bigg[ \int\limits_{0}^{20} x dx +\int\limits_{20}^{45} (x-20) dx +\int\limits_{45}^{70} (70-x) dx +\int\limits_{70}^{100} (x-70) dx \bigg]\\= \frac{51}{4} = 12.75](https://tex.z-dn.net/?f=E%5BY%5D%20%3D%20%5Cint%5Climits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%20D%28x%29f%28x%29%20dx%20%5C%5C%3D%20%5Cfrac%7B1%7D%7B100%7D%20%5Cbigg%5B%20%5Cint%5Climits_%7B0%7D%5E%7B20%7D%20x%20dx%20%2B%5Cint%5Climits_%7B20%7D%5E%7B45%7D%20%28x-20%29%20dx%20%2B%5Cint%5Climits_%7B45%7D%5E%7B70%7D%20%2870-x%29%20dx%20%2B%5Cint%5Climits_%7B70%7D%5E%7B100%7D%20%28x-70%29%20dx%20%20%5Cbigg%5D%5C%5C%3D%20%5Cfrac%7B51%7D%7B4%7D%20%3D%2012.75)
Answer:
It is a diagnal line that goes through (0,0) and (1,1) and has a slope of 1
Step-by-step explanation: