1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kazeer [188]
3 years ago
11

Match each equation on the left with the number and type of its solutions on the right.

Mathematics
1 answer:
klemol [59]3 years ago
3 0

Answer:

Step-by-step explanation:

1). Given equation is,

   2x² - 3x = 6

   2x² - 3x - 6 = 0

   To find the solutions of the equation we will use quadratic formula,

   x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}

   Substitute the values of a, b and c in the formula,

   a = 2, b = -3 and c = -6

   x = \frac{3\pm\sqrt{(-3)^2-4(2)(-6)}}{2(2)}

   x = \frac{3\pm\sqrt{9+48}}{4}

   x = \frac{3\pm\sqrt{57}}{4}

   x = \frac{3+\sqrt{57}}{4},\frac{3-\sqrt{57}}{4}

   Therefore, there are two real solutions.

2). Given equation is,

    x² + 1 = 2x

    x² - 2x + 1 = 0

    (x - 1)² = 0

     x = 1

     Therefore, there is one real solution of the equation.

3). 2x² + 3x + 2 = 0

     By applying quadratic formula,

     x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}

      x = \frac{-3\pm\sqrt{3^2-4(2)(2)}}{2(2)}

      x = \frac{-3\pm\sqrt{9-16}}{4}

      x = \frac{-3\pm i\sqrt{7}}{4}

      x = \frac{-3+ i\sqrt{7}}{4},\frac{-3- i\sqrt{7}}{4}

      Therefore, there are two complex (non real) solutions.

You might be interested in
Find the value of g(7) for the function below.
Yanka [14]

Answer: The correct answer is (A) - 60/7 :)

Step-by-step explanation: The answer is A because all of the other ones make absolutely no sense one bit at all...!

5 0
3 years ago
1. (5pts) Find the derivatives of the function using the definition of derivative.
andreyandreev [35.5K]

2.8.1

f(x) = \dfrac4{\sqrt{3-x}}

By definition of the derivative,

f'(x) = \displaystyle \lim_{h\to0} \frac{f(x+h)-f(x)}{h}

We have

f(x+h) = \dfrac4{\sqrt{3-(x+h)}}

and

f(x+h)-f(x) = \dfrac4{\sqrt{3-(x+h)}} - \dfrac4{\sqrt{3-x}}

Combine these fractions into one with a common denominator:

f(x+h)-f(x) = \dfrac{4\sqrt{3-x} - 4\sqrt{3-(x+h)}}{\sqrt{3-x}\sqrt{3-(x+h)}}

Rationalize the numerator by multiplying uniformly by the conjugate of the numerator, and simplify the result:

f(x+h) - f(x) = \dfrac{\left(4\sqrt{3-x} - 4\sqrt{3-(x+h)}\right)\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{\left(4\sqrt{3-x}\right)^2 - \left(4\sqrt{3-(x+h)}\right)^2}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{16(3-x) - 16(3-(x+h))}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{16h}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)}

Now divide this by <em>h</em> and take the limit as <em>h</em> approaches 0 :

\dfrac{f(x+h)-f(x)}h = \dfrac{16}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ \displaystyle \lim_{h\to0}\frac{f(x+h)-f(x)}h = \dfrac{16}{\sqrt{3-x}\sqrt{3-x}\left(4\sqrt{3-x} + 4\sqrt{3-x}\right)} \\\\ \implies f'(x) = \dfrac{16}{4\left(\sqrt{3-x}\right)^3} = \boxed{\dfrac4{(3-x)^{3/2}}}

3.1.1.

f(x) = 4x^5 - \dfrac1{4x^2} + \sqrt[3]{x} - \pi^2 + 10e^3

Differentiate one term at a time:

• power rule

\left(4x^5\right)' = 4\left(x^5\right)' = 4\cdot5x^4 = 20x^4

\left(\dfrac1{4x^2}\right)' = \dfrac14\left(x^{-2}\right)' = \dfrac14\cdot-2x^{-3} = -\dfrac1{2x^3}

\left(\sqrt[3]{x}\right)' = \left(x^{1/3}\right)' = \dfrac13 x^{-2/3} = \dfrac1{3x^{2/3}}

The last two terms are constant, so their derivatives are both zero.

So you end up with

f'(x) = \boxed{20x^4 + \dfrac1{2x^3} + \dfrac1{3x^{2/3}}}

8 0
2 years ago
Consider the following initial value problem, in which an input of large amplitude and short duration has been idealized as a de
Ganezh [65]

Answer:

a. \mathbf{Y(s) = L \{y(t)\} = \dfrac{7}{s(s+1)}+ \dfrac{e^{-3s}}{s+1}}

b. \mathbf{y(t) = \{7e^t + e^3 u (t-3)-7\}e^{-t}}

Step-by-step explanation:

The initial value problem is given as:

y' +y = 7+\delta (t-3) \\ \\ y(0)=0

Applying  laplace transformation on the expression y' +y = 7+\delta (t-3)

to get  L[{y+y'} ]= L[{7 + \delta (t-3)}]

l\{y' \} + L \{y\} = L \{7\} + L \{ \delta (t-3\} \\ \\ sY(s) -y(0) +Y(s) = \dfrac{7}{s}+ e ^{-3s} \\ \\ (s+1) Y(s) -0 = \dfrac{7}{s}+ e^{-3s} \\ \\ \mathbf{Y(s) = L \{y(t)\} = \dfrac{7}{s(s+1)}+ \dfrac{e^{-3s}}{s+1}}

Taking inverse of Laplace transformation

y(t) = 7 L^{-1} [ \dfrac{1}{(s+1)}] + L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{(s+1)-s}{s(s+1)}] +L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{1}{s}-\dfrac{1}{s+1}] + L^{-1}[\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]

L^{-1}[\dfrac{e^{-3s}}{s+1}]

L^{-1}[\dfrac{1}{s+1}] = e^{-t}  = f(t) \ then \ by \ second \ shifting \ theorem;

L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{f(t-3) \ \ \ t>3} \atop {0 \ \ \ \ \ \  \ \  \ t

L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{e^{(-t-3)} \ \ \ t>3} \atop {0 \ \ \ \ \ \  \ \  \ t

= e^{-t-3} \left \{ {{1 \ \ \ \ \  t>3} \atop {0 \ \ \ \ \  t

= e^{-(t-3)} u (t-3)

Recall that:

y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]

Then

y(t) = 7 -7e^{-t}  +e^{-(t-3)} u (t-3)

y(t) = 7 -7e^{-t}  +e^{-t} e^{-3} u (t-3)

\mathbf{y(t) = \{7e^t + e^3 u (t-3)-7\}e^{-t}}

3 0
3 years ago
14α - (2a + 9) = 3 (12a - 18)
Leona [35]

Answer:

a = 2 5/8

Step-by-step explanation:

14a - (2a + 9) = 3 (12a - 18)

14a - 2a + 9 = 36a - 54

12a + 9 = 36a - 54

12a - 36a = -54 - 9

-24a = -63

a = -63/-24

a = 21/8

a = 2 5/8

3 0
3 years ago
Write a word problem using 7 groups. Solve your problem?
aleksandr82 [10.1K]
Seven groups waited in line to see a concert. there were 9 people in each group. how many people were there in total?

9x7= 63
8 0
3 years ago
Other questions:
  • Helppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
    11·1 answer
  • Susan is celebrating her birthday by going out to eat at five guy's for burgers. If the bill in $40 and she wants to leave a tip
    12·1 answer
  • NEED HELP ASAP GIVING BRAINLIST!!!!!!!!
    14·2 answers
  • Please help, brainliest for correct answer
    8·2 answers
  • I NEED HELP ASAP <br> question is in picture
    10·1 answer
  • What is an equation of the line that passes through the point (5,4)(5,4) and is parallel to the line 6x-5y=156x−5y=15?
    14·1 answer
  • A square has a perimeter of 44yd. What is the length of each side?
    11·1 answer
  • What is the slope of the equation below? *
    7·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B3%7D%20x%20%5Btex%5D%5Cfrac%7B4%7D%7B15%7D" id="TexFormula1" title="\frac{2}{
    7·1 answer
  • In lines 44-48, the author of Passage 2 indicates that
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!