This one.
The doubly-shaded area is the solution set. The dashed line is not included.
Answer:
True
Step-by-step explanation:
Hi, the statement is true, because to divide a fraction we have to turn the second fraction upside down and multiply them. Since a whole number x can be written as x/1, it also applies to the case of dividing a fraction by a whole number.
We can prove it with an example.
Dividing a unit fraction by a whole number
1/2 ÷ 2 = (1x1) / (2x2) = 1/4
Multiplying the unit fractions by a unit fraction with a whole number as a denominator
1/2 x 1/2= (1x1) / (2x2) = 1/4
Answer:
12
Step-by-step explanation:
each letter can be used with each other 3 times and there are 4 letters so 12
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.