Answer:
First, find tan A and tan B.
cosA=35 --> sin2A=1−925=1625 --> cosA=±45
cosA=45 because A is in Quadrant I
tanA=sinAcosA=(45)(53)=43.
sinB=513 --> cos2B=1−25169=144169 --> sinB=±1213.
sinB=1213 because B is in Quadrant I
tanB=sinBcosB=(513)(1312)=512
Apply the trig identity:
tan(A−B)=tanA−tanB1−tanA.tanB
tanA−tanB=43−512=1112
(1−tanA.tanB)=1−2036=1636=49
tan(A−B)=(1112)(94)=3316
kamina op bolte
✌ ✌ ✌ ✌
Answer:
a and d
Step-by-step explanation:
i took the test
Answer:

Step-by-step explanation:
Take one polynomial from the other means to perform the sub.traction of them. Recall that it is better to use grouping symbols when subtracting polynomials, so we get the signs right when combining like terms:
The indicated subtraction is: 
Make sure that before removing the grouping symbol (parenthesis) that is preceded by a negative sign, we change the signs of every term inside it. Then combine like terms to get the final answer:

Which is the last option shown in the question
Answer: y = 6 mi. .
______________________________________________
Explanation:
______________________________________________
Area of a triangle = (½) * (base) * (height) ;
or, A = (½) * b * h ; or, A = b*h / 2 ;
_____________________________________
Given: A = 24.3 mi ² ;
b = 8.1 mi
___________________
Find the height, "h" ; (in units of "miles", or , "mi" ).
__________________________
Plug in the known values into the formula:
24.3 mi ² = (½) * (8.1 mi) *(h) ;
_____________________________
Solve for "h" (height) ;
_____________________________
(½) * (8.1 mi) = 4.05 mi ;
______________________________
Rewrite:
____________________________
24.3 mi² = (4.05 mi) *(h) ; Solve for "h" ;
_________________________________________
Divide each side of the equation by "(4.05 mi)" ; to isolate "h" on one side of the equation ; and to solve for "h" ;
__________________________________________
24.3 mi² / 4.05 mi = (4.05 mi) *(h) / 4.05 mi ;
→ 6 mi = h ; ↔ h = 6 mi.
→ h = y = 6 mi.
____________________________________________