If you use a large enough statistical sample size, you can apply the Central Limit Theorem (CLT) to a sample proportion for categorical data to find its sampling distribution. The population proportion, p, is the proportion of individuals in the population who have a certain characteristic of interest (for example, the proportion of all Americans who are registered voters, or the proportion of all teenagers who own cellphones). The sample proportion, denoted
Answer:
87 ?
Step-by-step explanation:
So you have x^3 - 4x = 0. What you can do is pull out an x from both x^3 and - 4x so it looks like this:

Then you can find a number that makes the part inside the parentheses turn into zero. For beginners, it may be easier to write it out seperately and solve for x.

We need to solve for x, so the first step is to add 4 to both sides, so we get something like this:

Then, we can square root both sides to get rid of the power on the x, so it looks like this:

Now, every square root has two answers, a positive and a negative. If we look at the bottom example:


We can see that both -2 and 2 to the power of two will equal to 4.
So finally, we get:

These are the other 'Zero's for the original function. If you are not sure of what a 'Zero' is, it is where the function crosses over the x-axis on a graph.
Answer:

Step-by-step explanation:
Let,
= y
sin(y) = 


---------(1)


cos(y) = 
= 
= 
Therefore, from equation (1),

Or ![\frac{d}{dx}[\text{sin}^{-1}(\frac{x}{6})]=\frac{1}{6\sqrt{1-\frac{x^2}{36}}}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctext%7Bsin%7D%5E%7B-1%7D%28%5Cfrac%7Bx%7D%7B6%7D%29%5D%3D%5Cfrac%7B1%7D%7B6%5Csqrt%7B1-%5Cfrac%7Bx%5E2%7D%7B36%7D%7D%7D)
At x = 4,
![\frac{d}{dx}[\text{sin}^{-1}(\frac{4}{6})]=\frac{1}{6\sqrt{1-\frac{4^2}{36}}}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctext%7Bsin%7D%5E%7B-1%7D%28%5Cfrac%7B4%7D%7B6%7D%29%5D%3D%5Cfrac%7B1%7D%7B6%5Csqrt%7B1-%5Cfrac%7B4%5E2%7D%7B36%7D%7D%7D)
![\frac{d}{dx}[\text{sin}^{-1}(\frac{2}{3})]=\frac{1}{6\sqrt{1-\frac{16}{36}}}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctext%7Bsin%7D%5E%7B-1%7D%28%5Cfrac%7B2%7D%7B3%7D%29%5D%3D%5Cfrac%7B1%7D%7B6%5Csqrt%7B1-%5Cfrac%7B16%7D%7B36%7D%7D%7D)




(3x-2)(x+1)
3x*x+3x-2x-2
3x^2+3x-2x-2
3x*2+x-2
I think this is the answer