1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
puteri [66]
3 years ago
13

............................................

Mathematics
1 answer:
siniylev [52]3 years ago
6 0

Answer:

..........hhjrrgjrfriou6

You might be interested in
If tanA+sinA=m and tanA-sinA=n.prove that m^2-n^2=4√mn
mash [69]

Let a=\tan A and b=\sin A. Then

m^2-n^2=(a+b)^2-(a-b)^2=(a^2+2ab+b^2)-(a^2-2ab+b^2)=4ab

\implies m^2-n^2=4\tan A\sin A

and

mn=(a+b)(a-b)=a^2-b^2

\implies4\sqrt{mn}=4\sqrt{\tan^2A-\sin^2A}

The expression under the square root can be rewritten as

\tan^2A-\sin^2A=\dfrac{\sin^2A}{\cos^2A}-\sin^2A=\sin^2A\left(\dfrac1{\cos^2A}-1\right)=\sin^2A(\sec^2A-1)

Recall that

\sin^2A+\cos^2A=1\implies\tan^2A+1=\sec^2A

so that

\tan^2A-\sin^2A=\sin^2A\tan^2A

and assuming \sin A>0 and \tan A>0, we end up with

4\sqrt{\tan^2A-\sin^2A}=4\tan A\sin A

so that

m^2-n^2=4\sqrt{mn}

as required.

5 0
3 years ago
Pls solve: 4x+7-2x=4
miss Akunina [59]
The answer is x = -3 / 2.
7 0
3 years ago
TO ANY MATH GEOMETRY GENIUS HELP ME OUT PLS
mr Goodwill [35]

Answer:

The answer is A

Step-by-step explanation:

since JHG = 65, then the other two angles added together = 65. Therefore, I can just add what the two smaller angles are to equal 65. Solve for x, then plug x into one of the equations! JHI = 19, and GHI = 46

7 0
3 years ago
Help me please!!!!!
nadya68 [22]
Man tbh wth is this at this point just trow that mug out the window
5 0
3 years ago
How to do the inverse of a 3x3 matrix gaussian elimination.
nata0808 [166]

As an example, let's invert the matrix

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}

We construct the augmented matrix,

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

On this augmented matrix, we perform row operations in such a way as to transform the matrix on the left side into the identity matrix, and the matrix on the right will be the inverse that we want to find.

Now we can carry out Gaussian elimination.

• Eliminate the column 1 entry in row 2.

Combine 2 times row 1 with 3 times row 2 :

2 (-3, 2, 1, 1, 0, 0) + 3 (2, 1, 1, 0, 1, 0)

= (-6, 4, 2, 2, 0, 0) + (6, 3, 3, 0, 3, 0)

= (0, 7, 5, 2, 3, 0)

which changes the augmented matrix to

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

• Eliminate the column 1 entry in row 3.

Using the new aug. matrix, combine row 1 and 3 times row 3 :

(-3, 2, 1, 1, 0, 0) + 3 (1, 1, 1, 0, 0, 1)

= (-3, 2, 1, 1, 0, 0) + (3, 3, 3, 0, 0, 3)

= (0, 5, 4, 1, 0, 3)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 5 & 4 & 1 & 0 & 3 \end{array} \right]

• Eliminate the column 2 entry in row 3.

Combine -5 times row 2 and 7 times row 3 :

-5 (0, 7, 5, 2, 3, 0) + 7 (0, 5, 4, 1, 0, 3)

= (0, -35, -25, -10, -15, 0) + (0, 35, 28, 7, 0, 21)

= (0, 0, 3, -3, -15, 21)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 3 & -3 & -15 & 21 \end{array} \right]

• Multiply row 3 by 1/3 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 3 entry in row 2.

Combine row 2 and -5 times row 3 :

(0, 7, 5, 2, 3, 0) - 5 (0, 0, 1, -1, -5, 7)

= (0, 7, 5, 2, 3, 0) + (0, 0, -5, 5, 25, -35)

= (0, 7, 0, 7, 28, -35)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 0 & 7 & 28 & -35 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 2 by 1/7 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 2 and 3 entries in row 1.

Combine row 1, -2 times row 2, and -1 times row 3 :

(-3, 2, 1, 1, 0, 0) - 2 (0, 1, 0, 1, 4, -5) - (0, 0, 1, -1, -5, 7)

= (-3, 2, 1, 1, 0, 0) + (0, -2, 0, -2, -8, 10) + (0, 0, -1, 1, 5, -7)

= (-3, 0, 0, 0, -3, 3)

\left[ \begin{array}{ccc|ccc} -3 & 0 & 0 & 0 & -3 & 3 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 1 by -1/3 :

\left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

So, the inverse of our matrix is

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}^{-1} = \begin{bmatrix}0&1&-1\\1&4&-5\\-1&-5&7\end{bmatrix}

6 0
2 years ago
Other questions:
  • Be What's the difference between the high and low temperature in the thermometer? Highest temperature 3°F and the lowest tempera
    9·2 answers
  • Two math classes took the same classes
    12·1 answer
  • How many cups of ketchup would 13 hamburgers get if there was 3 1/4 cups of ketchup to be equally split among the 13 burgers? (i
    10·1 answer
  • He bought four violas for 40$ each. Later he bought one whistle for 100$. After that, he returned one viola. Write the total cha
    8·1 answer
  • There are 50 sheets of drawing paper.
    8·1 answer
  • Which is the graph of 4x + 2y < 3?
    12·1 answer
  • A vertical line has a(n) ________ slope. a. undefined b. negative c. zero d. positive
    7·1 answer
  • Which of the following represents the most accurate estimation of 96 - 38?
    6·1 answer
  • Help please
    8·1 answer
  • Given: ABCD is a rectangle.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!