Answer:
I think the answer is B.
Step-by-step explanation:
I am very sorry if it is incorrect.
By definition of circumference, the length of the arc EF (radius: 6 in, central angle: 308°) shown in red is approximately equal to 32.254 inches.
<h3>How to calculate the length of an arc</h3>
The figure presents a circle, the arc of a circle (s), in inches, is equal to the product of the <em>central</em> angle (θ), in radians, and the radius (r), in inches. Please notice that a complete circle has a central angle of 360°.
If we know that θ = 52π/180 and r = 6 inches, then the length of the arc CD is:
s = [(360π/180) - (52π/180)] · (6 in)
s ≈ 32.254 in
By definition of circumference, the length of the arc EF (radius: 6 in, central angle: 308°) shown in red is approximately equal to 32.254 inches.
<h3>Remark</h3>
The statement has typing mistakes, correct form is shown below:
<em>Find the length of the arc EF shown in red below. Show all the work.</em>
To learn more on arcs: brainly.com/question/16765779
#SPJ1
So all you have to do is look at were the number is is it is in the first spot it is in the tenths place value, second spot hundredth and so