Answer:
-10
-5
5
Step-by-step explanation:
From the answers given, you probably mean f(x) = x^3 + 10x2 – 25x – 250
The Remainder Theorem is going to take a bit to solve.
You have to try the factors of 250. One way to make your life a lot easier is to graph the equation. That will give you the roots.
The graph appears below. Since the y intercept is -250 the graph goes down quite a bit and if you show the y intercept then it will not be easy to see the roots.
However just to get the roots, the graph shows that
x = -10
x = - 5
x = 5
The last answer is the right one. To use the remainder theorem, you could show none of the answers will give 0s except the last one. For example, the second one will give
f((10) = 10^3 + 10*10^2 - 25*10 - 250
f(10) = 1000 + 1000 - 250 - 250
f(10) = 2000 - 500
f(10) = 1500 which is not 0.
==================
f(1) = (1)^3 + 10*(1)^2 - 25(1) - 250
f(1) = 1 + 10 - 25 - 250
f(1) = -264 which again is not zero
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: cos 330 = 
Use the Double-Angle Identity: cos 2A = 2 cos² A - 1

Proof LHS → RHS:
LHS cos 165
Double-Angle: cos (2 · 165) = 2 cos² 165 - 1
⇒ cos 330 = 2 cos² 165 - 1
⇒ 2 cos² 165 = cos 330 + 1
Given: 

Divide by 2: 

Square root: 
Scratchwork: 

Since cos 165 is in the 2nd Quadrant, the sign is NEGATIVE

LHS = RHS 
10. The numbers on the horizontal line would be:
1, 2, 3, 4, 5, 6
11. Count how many of each number there is.
1- 3
2- 4
3- 2
4- 3
5- 2
6- 2
So numbers 1 and 4 will both have 3 dots above them and numbers 3, 5, 6 will have 2 dots above them.