
Here, we want to get what Andre's mistake was and correct it
To answer this, we are supposed to use the division law of indices
We have this as;

Now, in the case of this question, x is 4 and y is -3
So, we have the expression as;

His mistake is thus adding the exponents instead of subtracting
Answer:
50mm
Step-by-step explanation:
use pythagorean theorem. sqrt(14^2+48^2)=50
In order to solve this equation, you must focus your efforts on isolating x. First, add 4x to both sides of the equation. This will eliminate it on the left and cause the equation to look like this: 35=15+4x. Next, you need to subtract 15 from both sides <span>which will eliminate it on the right and cause the equation to look like this: 20=4x. Finally, you must divide both sides of the equation by 4. Ta-da!~ This leaves you with x=5.
The answer is x=5.
Good luck and good day! c:
</span>
Slope (m) of a line = (y2-y1)/(x2-x1)
So for line AB, the slope is (3-2)/(-1-1)
= 1/-2 = -1/2
For line AC = (3--1)/(-1--3) = (3+1)/(3-1)
= 4/2 = 2
For line BC = (2--1)/(1--3) = (2+1)/(1+3)
= 3/4
In order for an angle (<) to be right, it must be 90°, so the two lines making the right angle must be perpendicular. Perpendicular lines by definition have slopes that are the negative reciprocal. That means that you change the sign of one line's slope (m) and divide 1 by it:
m2 = 1/-m1
So for lines AB and AC: m(AC) = 1/-m(AB),
does 2 = 1/--1/2? YES!! 1/--1/2 = 1/1/2 = 2, so < BAC is 90° and therefore a right <
How about for lines AB and BC: m(BC) = 1/-m(AB), does 3/4 = 1/--1/2? NO, because 1/--1/2 = 1/1/2 = 2, not = to 3/4, so < ABC is not right
How about our last < BCA: m(AC) = 1/-m(BC), does 2 = 1/-3/4? NO, because 1/-3/4 = -4/3, not = to 2, so < BCA is not right
So yes, the triangle is a right triangle because < BAC is right (=90°)!