Let's use Gaussian elimination. Consider the augmented matrix,
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\-1 & 2 & 3 & 0 & 1 & 0\\1 & 1 & 4 & 0 & 0 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C-1%20%26%202%20%26%203%20%26%200%20%26%201%20%26%200%5C%5C1%20%26%201%20%26%204%20%26%200%20%26%200%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add row 1 to row 2, and add -1 (row 1) to row 3:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 2 & 1 & 1 & 0\\0 & 2 & 5 & -1 & 0 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%202%20%26%201%20%26%201%20%26%200%5C%5C0%20%26%202%20%26%205%20%26%20-1%20%26%200%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add -2 (row 2) to row 3:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 2 & 1 & 1 & 0\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%202%20%26%201%20%26%201%20%26%200%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add -2 (row 3) to row 2:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 0 & 7 & 5 & -2\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%200%20%26%207%20%26%205%20%26%20-2%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add row 2 and row 3 to row 1:
![\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 5 & 3 & -1\\0 & 1 & 0 & 7 & 5 & -2\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%200%20%26%200%20%26%205%20%26%203%20%26%20-1%5C%5C0%20%26%201%20%26%200%20%26%207%20%26%205%20%26%20-2%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
So the inverse is

Given the expression,

We will have to rationalize the denominator first. To rationalize the denominator we have to multiply the numerator and denominator both by the square root part of the denominator.
![[(8x-56x^2)(\sqrt{14x-2})]/[(\sqrt{14x-2})(\sqrt{14x-2})]](https://tex.z-dn.net/?f=%20%5B%288x-56x%5E2%29%28%5Csqrt%7B14x-2%7D%29%5D%2F%5B%28%5Csqrt%7B14x-2%7D%29%28%5Csqrt%7B14x-2%7D%29%5D%20)
If we have
, we will get
by multiplying them. And
.
So here in the problem, we will get,
![[(8x-56x^2)(\sqrt{14x-2})]/(14x-2)](https://tex.z-dn.net/?f=%20%5B%288x-56x%5E2%29%28%5Csqrt%7B14x-2%7D%29%5D%2F%2814x-2%29%20)
Now in the numerator we have
. We can check 8x is common there. we will take out -8x from it, we will get,


And in the denominator we have
. We can check 2 is common there. If we take out 2 from it we will get,

So we can write the expression as
![[(-8x)(7x-1)(\sqrt{14x-2})]/[2(7x-1)]](https://tex.z-dn.net/?f=%20%5B%28-8x%29%287x-1%29%28%5Csqrt%7B14x-2%7D%29%5D%2F%5B2%287x-1%29%5D%20)
is common to the numerator and denominator both, if we cancel it we will get,

We can divide -8 by the denominator, as -8 os divisible by 2. By dividing them we will get,


So we have got the required answer here.
The correct option is the last one.
Answer:
360 in^3 (360 inches squared)
Step-by-step explanation:
Find area of each surface:
8 in*9 in=72 in^2
15 in*9 in=135 in^2
17 in*9 in=153 in^2
then, add up all the numbers:
72+135+153=360 in^3
Lets write equation of a function:
y = kx + n
Direct variation in simple is equation of a line which has n=0 or in other words which y to x ratio is k.
First option gets 7=7 but it isnt direct variation because n is not equal to 0
third option is indeed correct. once we implement coordinates (2,7) we get 7=7
Answer is
y = 7/2x
Answer:
93
Step-by-step explanation: