Answer:


Now, add these two equations.
You get,



Given,




You can test this to the other equation as well.


Hence, the two numbers are 14 and 10.
Answer: 5 km walking and 30 km by bus
Step-by-step explanation:
Yochanan walked from home to the bus stop at an average speed of 5 km / h. He immediately got on his school bus and traveled at an average speed of 60 km / h until he got to school. The total distance from his home to school is 35 km, and the entire trip took 1.5 hours. How many km did Yochanan cover by walking and how many did he cover by travelling on the bus?
walking - 5km/h bus - 60km/h
distance walking - d₁ distance bus - d₂
time walking - t₁ time bus - t₂
d₁ + d₂ = 35
t₁ + t₂ = 1.5
v = d/t
vwalking = d₁/t₁
5 = d₁/t₁ ⇒ d₁ = 5t₁
vbus = d₂/t₂
60 = d₂/t₂ ⇒ d₂ = 60t₂
d₁ + d₂ = 35 ⇒ 5t₁ + 60t₂ = 35
_________________________
5t₁ + 60t₂ = 35
t₁ + t₂ = 1.5 (*-5)
5t₁ + 60t₂ = 35
-5t₁ -5t₂ = -7.5 (+)
__________________________
55t₂ = 27.5
t₂ = 27.5/55 = 0.5 h
t₁ + t₂ = 1.5 ⇒ t₁ = 1.5 - 0.5 = 1h
d₁ = 5t₁ ⇒ d₁ = 5.1 = 5 km
d₂ = 60t₂ ⇒ d₂ = 30.0.5 = 30 km
Answer:
13m-26mr boom that's it
Step-by-step explanation:
i think
We want to see how many solutions has an equation given some restrictions on the vectors of the equation.
We have 3 vectors in R2.
v₁, v₂, and v₃.
Where we know that v₁ and v₂ are parallel. And two vectors are parallel if one is a scalar times the other.
Then we can write:
v₂ = c*v₁
Where c is a real number.
Then our system:
x*v₁ + y*v₂ = v₃
Can be rewriten to:
x*v₁ + y*c*v₁ = v₃
(x + y*c)*v₁ = v₃
Assuming x, y, and c are real numbers, this only has a solution if v₁ is also parallel to v₃, because as you can see, the equation says that v₃ is a scallar times v₁.
Geometrically, this means that if we sum two parallel vectors, we will get a vector that is parallel to the two that we added.
If you want to learn more, you can read:
brainly.com/question/13322477
Answer:
378 pictures
Step-by-step explanation:
600 multiplied .63