1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allochka39001 [22]
3 years ago
13

Find the value of the trig function indicated ​

Mathematics
1 answer:
Lera25 [3.4K]3 years ago
6 0

Answer:

\cos(\theta)=\frac{4}{5}

Step-by-step explanation:

Step 1:

Let us find the missing side. We know this is a <u>right triangle</u>, so we can use the pythagorean thereom to find the last side. Let us set 12 as variable <em>a</em>, 20 as variable <em>c</em>, and the unknown side as variable <em>b</em>.

a^2+b^2=c^2\\12^2_b^2=20^2\\b^2=400-144\\b^2=256\\b=\pm16

We do know that a <u>length can never be negative</u>, so the side <em>b</em> would be 16.

Step 2:

According to SOHCAHTOA, cosine is utilizes the adjacent and hypotenuse of the given angle theta. Let us write the equation:

\cos(\theta)=\frac{adjacent}{hypotenuse} \\\\\cos(\theta)=\frac{16}{20} \\\\\cos(\theta)=\frac{4}{5}

<em>I hope this helps! Let me know if you have any questions :)</em>

You might be interested in
(a) Use the reduction formula to show that integral from 0 to pi/2 of sin(x)^ndx is (n-1)/n * integral from 0 to pi/2 of sin(x)^
Sedbober [7]
Hello,

a)
I= \int\limits^{ \frac{\pi}{2} }_0 {sin^n(x)} \, dx = \int\limits^{ \frac{\pi}{2} }_0 {sin(x)*sin^{n-1}(x)} \, dx \\&#10;&#10;= [-cos(x)*sin^{n-1}(x)]_0^ \frac{\pi}{2}+(n-1)*\int\limits^{ \frac{\pi}{2} }_0 {cos(x)*sin^{n-2}(x)*cos(x)} \, dx \\&#10;&#10;=0 + (n-1)*\int\limits^{ \frac{\pi}{2} }_0 {cos^2(x)*sin^{n-2}(x)} \, dx \\&#10;&#10;= (n-1)*\int\limits^{ \frac{\pi}{2} }_0 {(1-sin^2(x))*sin^{n-2}(x)} \, dx \\&#10;= (n-1)*\int\limits^{ \frac{\pi}{2} }_0 {sin^{n-2}(x)} \, dx - (n-1)*\int\limits^{ \frac{\pi}{2} }_0 {sin^n(x) \, dx\\&#10;&#10;
I(1+n-1)= (n-1)*\int\limits^{ \frac{\pi}{2} }_0 {sin^{n-2}(x)} \, dx \\&#10;I= \dfrac{n-1}{n} *\int\limits^{ \frac{\pi}{2} }_0 {sin^{n-2}(x)} \, dx \\&#10;

b)
\int\limits^{ \frac{\pi}{2} }_0 {sin^{3}(x)} \, dx \\&#10;= \frac{2}{3} \int\limits^{ \frac{\pi}{2} }_0 {sin(x)} \, dx \\&#10;= \dfrac{2}{3}\ [-cos(x)]_0^{\frac{\pi}{2}}=\dfrac{2}{3} \\&#10;&#10;&#10;&#10;&#10;

\int\limits^{ \frac{\pi}{2} }_0 {sin^{5}(x)} \, dx \\&#10;= \dfrac{4}{5}*\dfrac{2}{3} \int\limits^{ \frac{\pi}{2} }_0 {sin(x)} \, dx = \dfrac{8}{15}\\&#10;&#10;&#10;&#10;&#10;&#10;

c)

I_n=  \dfrac{n-1}{n} * I_{n-2} \\&#10;&#10;I_{2n+1}=  \dfrac{2n+1-1}{2n+1} * I_{2n+1-2} \\&#10;= \dfrac{2n}{2n+1} * I_{2n-1} \\&#10;= \dfrac{(2n)*(2n-2)}{(2n+1)(2n-1)} * I_{2n-3} \\&#10;= \dfrac{(2n)*(2n-2)*...*2}{(2n+1)(2n-1)*...*3} * I_{1} \\\\&#10;&#10;I_1=1\\&#10;&#10;




3 0
4 years ago
Okay I’ve been struggling on this for like 20 min, someone Pleaseee help me
Debora [2.8K]

Answer:

Angle M=14.25°

Step-by-step explanation:

Sin(M)=16/65

Sin^-1(16/65)=14.25°

4 0
3 years ago
Please help me..............................
myrzilka [38]

Answer:

y = 12

Step-by-step explanation:

∵ m∠ABC = 40

∵ BD ray is the bisector of ∠ABC

∴ m∠ABD = m∠CBD = 20

In 2 Δ BAD and BCD:

∵ m∠BAD = m∠BCD = 90°

∵ m∠ABD = m∠CBD = 20°

∵ BD is a common side in the two triangles

∴ ΔABD congruent to ΔCBD⇒(AAS)

∴ AD = CD

∴ 3y + 6 = 5y - 18

∴ 5y - 3y = 6 + 18

∴ 2y = 24

∴ y = 24/2 = 12

6 0
4 years ago
Donna is in charge of planning a reception for 1800 people. He is trying to decide which snacks to buy. He has asked a random sa
Svet_ta [14]

55 people?? i think i got it correct !!!

7 0
3 years ago
The radius of a circle is 18 in what is the area and circumference ​
Inessa05 [86]

Answer:

324 pi .  and 36 pi

Step-by-step explanation:

Area is pi r squared, so 18x18 is 324, times pi which is 324 pi

Circumference is 2 pi r, which is 2 times 18 which is 36, times pi which is 36 pi

:D

7 0
3 years ago
Other questions:
  • Find the difference 7/x^2-3x - 1/x^2-9
    12·1 answer
  • Solve the quadratic equation 3x^2-5x-7=0
    15·2 answers
  • What is the solution to the equation 3(x- 1) - 2(2x + 1) = 8(x - 1)?
    12·1 answer
  • How do you divide a negative number and a positive number?
    6·1 answer
  • A study group is to be selected from 5 freshmen, 7 sophomores, and 4 juniors. a) If a study group is to consist of 2 freshmen, 3
    10·1 answer
  • Find the numbers b such that the average value of f(x) = 4 + 10x − 6x2 on the interval [0, b] is equal to 5.
    14·1 answer
  • Geometry please help!:(
    9·1 answer
  • Help plz:)))I’ll mark u Brainliest
    9·1 answer
  • What is -4x +7 = 11
    14·2 answers
  • POLYNOMIALS // ALGEBRA 2 <br><br> multiple choice question!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!