Answer:
1/2
Step-by-step explanation:
Hello from MrBillDoesMath!
Answer:
Top line: y = (2/3)x + 2
Bottom line: y = (2/3)x -1
Discussion:
The graph provided is hard to read but I did the best I could.
The top line appears to pass through the points (0,2) and (-3,0)
For this line
m = change y /change x = (0-2)/(-3-0) = -2/-3 = +2/3. So
y = mx + b => y = (2/3) x+ b. As the line passes through (0,2) set x = 0, y= 2 in y = (2/3)x + b =>
2 = (2/3) 0 + b => b = 2
Therefore y = (2/3)x + 2
The bottom line appears to pass through the points (0,-1) and (3,1)
For this line
m = change y /change x = (1-(-1)) /(3-0) = +2/-3. So
y = mx + b => y = (2/3) x+ b. As the line passes through (0,-1) set x = 0, y= -1 in y = (2/3)x + b =>
-1 = (2/3) 0 + b => b = -1
Therefore y = (2/3)x + -1
Thank you,
MrB
Given the angle:
-660°
Let's find the coterminal angle from 0≤θ≤360.
To find the coterminal angle, in the interval given, let's keep adding 360 degrees to the angle until we get the angle in the interval,
We have:
Coterminal angle = -660 + 360 = -300 + 360 = 60°
Therefore, the coterminal angle is 60°.
Since 60 degrees is between 0 to 90 degrees, is is quadrant I.
60 degrees lie in Quadrant I.
Also since it is in quadrant I, the reference angle is still 60 degrees.
ANSWER:
The coterminal angle is 60°, which lies in quadrant I, with a reference angle of 60°
Answer:
137
Step-by-step explanation:
A straight line is 180 so take 180 and subtract 43
Answer:
a^2bc
Step-by-step explanation: