The correct answer is maybe 3
1.
- Cone
2.
- Sphere
3.
- Cylinder
4.
- Pyramid
5.
- Prism
Solution:
1. ![L \cdot A=\pi r l](https://tex.z-dn.net/?f=L%20%5Ccdot%20A%3D%5Cpi%20r%20l)
Lateral surface area of cone = ![\pi r l](https://tex.z-dn.net/?f=%5Cpi%20r%20l)
where r is the radius of the cone and l is the slant height of the cone.
2. ![V=\frac{4}{3} \pi r^{3}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20r%5E%7B3%7D)
Volume of sphere = ![\frac{4}{3} \pi r^{3}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20r%5E%7B3%7D)
where r is the radius of the sphere.
3. ![T \cdot A=2 \pi r h+2 \pi r^{2}](https://tex.z-dn.net/?f=T%20%5Ccdot%20A%3D2%20%5Cpi%20r%20h%2B2%20%5Cpi%20r%5E%7B2%7D)
Total surface area of cylinder = ![2 \pi r h+2 \pi r^{2}](https://tex.z-dn.net/?f=2%20%5Cpi%20r%20h%2B2%20%5Cpi%20r%5E%7B2%7D)
where r is the radius of the cylinder and h is the height of the cylinder.
4. ![V=\frac{1}{3} B h](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%20B%20h)
Volume of pyramid = ![\frac{1}{3} B h](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7D%20B%20h)
where B is the base area of the pyramid and h is the height of the pyramid.
5. ![L . A=p h](https://tex.z-dn.net/?f=L%20.%20A%3Dp%20h)
Lateral surface area of prism = ![p h](https://tex.z-dn.net/?f=p%20h)
where p is the perimeter of the base and h is the height of the prism.
Here’s the graph. I hope this is right
The answer is option B
hope it helps!!
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>