Answer:
5/4in
Step-by-step explanation:
The initial length:
1 ft = 12 in
8 ft = 8 * 12 in
= 96 in
The final length:
7 ft 10 3/4 in = 7 ft + 10 in + 3/4 in
= 7 * 12 in + 10 in + 3/4 in
= 84 in + 10 in + 3/4 in
= 94 in + 3/4 in
The final length:
96 in - 94 in - 3/4 in = 2 in - 3/4 in = 8/4 in - 3/4 in = 5/4 in
O.6 easy because of the answer that is why
Answer:
D
Step-by-step explanation:
The y intercept is (0,2) so you can eliminate A and C because they have -2 and the slope is negative so you can eliminate B because it has a slope of +3 so you are left with D.
Answer:
=![\frac{4 e^{2s} }{65 } ({8 cos (\frac{1}{4} ) s + sin \frac{1}{4} s} ))](https://tex.z-dn.net/?f=%5Cfrac%7B4%20e%5E%7B2s%7D%20%7D%7B65%20%7D%20%28%7B8%20cos%20%28%5Cfrac%7B1%7D%7B4%7D%20%29%20s%20%2B%20%20sin%20%5Cfrac%7B1%7D%7B4%7D%20%20s%7D%20%29%29)
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given that ![f(s) = e^{2s} cos\frac{s}{4}](https://tex.z-dn.net/?f=f%28s%29%20%3D%20%20e%5E%7B2s%7D%20cos%5Cfrac%7Bs%7D%7B4%7D)
Now integrating
![\int\limits {f(s)} \, ds = \int\limits {e^{2s} cos\frac{s}{4} ds](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bf%28s%29%7D%20%5C%2C%20ds%20%3D%20%20%5Cint%5Climits%20%7Be%5E%7B2s%7D%20cos%5Cfrac%7Bs%7D%7B4%7D%20ds)
By using integration formula
![\int\limits { e^{ax} cos b x dx = \frac{e^{ax} }{a^{2}+b^{2} } ( a cos b x + b sin b x )](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%20e%5E%7Bax%7D%20cos%20b%20x%20dx%20%3D%20%5Cfrac%7Be%5E%7Bax%7D%20%7D%7Ba%5E%7B2%7D%2Bb%5E%7B2%7D%20%20%7D%20%28%20a%20cos%20b%20x%20%2B%20b%20sin%20b%20x%20%29)
<u><em>Step(ii):-</em></u>
=
= ![\frac{e^{2s} }{(4+\frac{1}{16})} ( 2 cos (\frac{1}{4} ) s + \frac{1}{4} sin \frac{1}{4} s ))](https://tex.z-dn.net/?f=%5Cfrac%7Be%5E%7B2s%7D%20%7D%7B%284%2B%5Cfrac%7B1%7D%7B16%7D%29%7D%20%28%202%20cos%20%28%5Cfrac%7B1%7D%7B4%7D%20%29%20s%20%2B%20%5Cfrac%7B1%7D%7B4%7D%20%20sin%20%5Cfrac%7B1%7D%7B4%7D%20%20s%20%29%29)
= ![\frac{e^{2s} }{(\frac{65}{16} } ( \frac{8 cos (\frac{1}{4} ) s + sin \frac{1}{4} s}{4} ))](https://tex.z-dn.net/?f=%5Cfrac%7Be%5E%7B2s%7D%20%7D%7B%28%5Cfrac%7B65%7D%7B16%7D%20%7D%20%28%20%5Cfrac%7B8%20cos%20%28%5Cfrac%7B1%7D%7B4%7D%20%29%20s%20%2B%20%20sin%20%5Cfrac%7B1%7D%7B4%7D%20%20s%7D%7B4%7D%20%20%29%29)
= ![16 X\frac{e^{2s} }{65 } ( \frac{8 cos (\frac{1}{4} ) s + sin \frac{1}{4} s}{4} ))](https://tex.z-dn.net/?f=16%20X%5Cfrac%7Be%5E%7B2s%7D%20%7D%7B65%20%7D%20%28%20%5Cfrac%7B8%20cos%20%28%5Cfrac%7B1%7D%7B4%7D%20%29%20s%20%2B%20%20sin%20%5Cfrac%7B1%7D%7B4%7D%20%20s%7D%7B4%7D%20%20%29%29)
=![\frac{4 e^{2s} }{65 } ({8 cos (\frac{1}{4} ) s + sin \frac{1}{4} s} ))](https://tex.z-dn.net/?f=%5Cfrac%7B4%20e%5E%7B2s%7D%20%7D%7B65%20%7D%20%28%7B8%20cos%20%28%5Cfrac%7B1%7D%7B4%7D%20%29%20s%20%2B%20%20sin%20%5Cfrac%7B1%7D%7B4%7D%20%20s%7D%20%29%29)
<u><em>Final answer:-</em></u>
=![\frac{4 e^{2s} }{65 } ({8 cos (\frac{1}{4} ) s + sin \frac{1}{4} s} ))](https://tex.z-dn.net/?f=%5Cfrac%7B4%20e%5E%7B2s%7D%20%7D%7B65%20%7D%20%28%7B8%20cos%20%28%5Cfrac%7B1%7D%7B4%7D%20%29%20s%20%2B%20%20sin%20%5Cfrac%7B1%7D%7B4%7D%20%20s%7D%20%29%29)