Answer:
62.4 square centimeters
Step-by-step explanation:
The picture of the question in the attached figure
we know that
The surface area of the triangular pyramid is equal to the area of the triangular base plus the area of its three lateral triangular faces
In this problem the triangles are equilateral, that means, the
surface area is equal to the area of four congruent equilateral triangles
so
![A=4[\frac{1}{2}(b)(h)]](https://tex.z-dn.net/?f=A%3D4%5B%5Cfrac%7B1%7D%7B2%7D%28b%29%28h%29%5D)
we have

substitute
![A=4[\frac{1}{2}(6)(5.2)]=62.4\ cm^2](https://tex.z-dn.net/?f=A%3D4%5B%5Cfrac%7B1%7D%7B2%7D%286%29%285.2%29%5D%3D62.4%5C%20cm%5E2)
I'm guessing the series is supposed to be

By the ratio test, the series converges if the following limit is less than 1.

The first

terms in the numerator's denominator cancel with the denominator's denominator:


also cancels out and the remaining factor of

can be pulled out of the limit (as it doesn't depend on

).

which means the series converges everywhere (independently of

), and so the radius of convergence is infinite.
Answer:
Step-by-step explanation:
Area of a circle = pi x square of radius = 30.190 ft
Answer:
no solution
Step-by-step explanation:
y = -2x + 3
6x + 3y = -3
the substitution method means you plug one equation into the next, because the first equation gives us a solution for y we can go ahead and plug that into y of the second equation
6x + 3(-2x + 3) = -3
6x - 6x + 9 = -3
9 = -3
which is false meaning that there are no solutions and the lines don't touch at any point