punta
<span>Negro culo
lol
lol
lol
lol</span>
Answer:


Step-by-step explanation:
Let the width of a rectangular garden be 'w'
Length of a rectangular garden = 6 + w
Perimeter of a rectangular garden = 32 feet
<u>
</u><u> </u><u>Finding </u><u>the</u><u> </u><u>width</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>rectangular</u><u> </u><u>garden</u> :



Like terms are those which have the same base













Width of a rectangular garden = 5 feet
<u>Substituting </u><u>/</u><u> </u><u>Replacing </u><u>the </u><u>value </u><u>of </u><u>w </u><u>in </u><u>6</u><u> </u><u>+</u><u> </u><u>w </u><u>in </u><u>order </u><u>to </u><u>find</u><u> </u><u>the</u><u> </u><u>length</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>rectangular </u><u>garden</u>

<u>Finding</u><u> </u><u>the</u><u> </u><u>area</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>rectangular</u><u> </u><u>garden</u><u> </u><u>having</u> <u>length of 11 feet and</u><u> </u><u>width</u><u> </u><u>of</u><u> </u><u>5</u><u> </u><u>feet</u> :



Area of a rectangular garden = 55 ft²
Hope I helped!
Best regards! :D
~
Answer:
6194.84
Step-by-step explanation:
Using the formula for calculating accumulated annuity amount
F = P × ([1 + I]^N - 1 )/I
Where P is the payment amount. I is equal to the interest (discount) rate and N number of duration
For 40 years,
X = 100[(1 + i)^40 + (1 + i)^36 + · · ·+ (1 + i)^4]
=[100 × (1+i)^4 × (1 - (1 + i)^40]/1 − (1 + i)^4
For 20 years,
Y = A(20) = 100[(1+i)^20+(1+i)^16+· · ·+(1+i)^4]
Using X = 5Y (5 times the accumulated amount in the account at the ned of 20 years) and using a difference of squares on the left side gives
1 + (1 + i)^20 = 5
so (1 + i)^20 = 4
so (1 + i)^4 = 4^0.2 = 1.319508
Hence X = [100 × (1 + i)^4 × (1 − (1 + i)^40)] / 1 − (1 + i)^4
= [100×1.3195×(1−4^2)] / 1−1.3195
X = 6194.84
5y-10 and 2y-6 unless the two are together in which case are they being added or multiplied (the equations).
A is poor
B is good
C is marginal