Answer:
4y^2 - 9x^2 = -36
Step-by-step explanation:
x = 2 sec t
y = 3 tan t
x^2 = 4 sec^2 t
y^2 = 9 tan^2 t
Now sec^2t = 1 + tan^2 t so we have:
4(1 + tan^2 t) + 9 tan^2 t = x^2 + y^2
4 + 13 tan^2 t = x^2 + y^2
13 tan^2 t = x^2 + y^2/ - 4
tan^2 t = x^2/13 + y^2/13 - 4/13
But , from the second equation tan t = y/3 so tan^2 t = y^2/9, so:
y^2/9 = x^2/13 + y^2/13 - 4/13
LCM of 9 and 13 is 117 so multiply thru by 117:
13y^2 = 9y^2 + 9x^2- 36
4y^2 - 9x^2 = -36
Answer:
10
Step-by-step explanation:
1x2x2.5=5
5/0.5=10
Answer:
Step-by-step explanation:
hello : look this solution
Answer:
5.1
Step-by-step explanation:
Compounded Annually:
A=P(1+r)^t
A=P(1+r)
t
A=27200\hspace{35px}P=20000\hspace{35px}r=0.062
A=27200P=20000r=0.062
Given values
27200=
27200=
\,\,20000(1+0.062)^{t}
20000(1+0.062)
t
Plug in values
27200=
27200=
\,\,20000(1.062)^{t}
20000(1.062)
t
Add
\frac{27200}{20000}=
20000
27200
=
\,\,\frac{20000(1.062)^{t}}{20000}
20000
20000(1.062)
t
Divide by 20000
1.36=
1.36=
\,\,1.062^t
1.062
t
\log\left(1.36\right)=
log(1.36)=
\,\,\log\left(1.062^t\right)
log(1.062
t
)
Take the log of both sides
\log\left(1.36\right)=
log(1.36)=
\,\,t\log\left(1.062\right)
tlog(1.062)
Bring exponent to the front
\frac{\log\left(1.36\right)}{\log\left(1.062\right)}=
log(1.062)
log(1.36)
=
\,\,\frac{t\log\left(1.062\right)}{\log\left(1.062\right)}
log(1.062)
tlog(1.062)
Divide both sides by log(1.062)
5.1116317=
5.1116317=
\,\,t
t
Use calculator
t\approx
t≈
\,\,5.1
5.1
Answer: first answer choice
Step-by-step explanation: