Answer:
Yes, the triangles are similar by SAS
Step-by-step explanation:
Looking at the picture, we see that there are two triangles with side lengths of different sides. We can deduce that the scale factor is 1 2/3, because 8 divided by 4.8 is 1 2/3, and 10 divided by 6 is the same. Now that we have clarified that the triangles share the same scale factor, we notice that the angle is also the same, as mentioned in the picture. This leads us to say that the triangles are similar by the SAS similarity theorem (Side, Angle, Side). I hope this helped and please don't hesitate to reach out with more questions!
Answer: 5.0
Step-by-step explanation:
Answer:
Angle 1 = 75°
Angle 2 = 55°
Angle 3 = 55°
Angle 4 = 40°
Angle 5 = 140°
Angle 6 = 40°
Angle 7 = 75°
Angle 8 = 65°
Angle 9 = 115°
Step-by-step explanation:
1) We start with angle 2
Angle 2
Angles on a straight line = 180°
Hence,
b + 125° = 180°
b = 180° - 125°
b = 55°
Angle 2 = 55°
2)Angle 1
The sum of angles in a triangle = 180°
Hence
Let Angle 1 = a
50° + 55° + a = 180°
a = 180° - (50° + 55°)
a = 180° - 105°
a = 75°
3)Angle 3
Angle 2 and Angle 3 are vertical angles
So we use the Vertical angle theorem
This means
Angle 2 = Angle 3
Angle 2 = 55°
Hence, Angle 3 = 55°
4) Angle 4
Sum of Angles in a triangle = 180°
Let Angle 4 = d
Hence:
85° + Angle 3 + d = 180°
85° + 55° + d = 180°
d= 180° - (85° + 55°)
d = 180°- 140°
d = 40°
5)Angle 5
Angle 4 and Angle 5 are angles on a straight line
Sum of angles on a straight line = 180°
Angle 4 = 40°
Let Angle 5 = e
Hence:
40° + e = 180°
Collect like terms
e = 180° - 40°
e = 140°
6) Angle 6
Angle 4 and Angle 6 are vertical angles
Using Vertical angle theorem,
Angle 4 = Angle 6
Angle 4 = 40°
Hence, Angle 6 = 40°
7)Angle 9
Solving for Angle 9,
Sum of angles on a straight line = 180°
Angle 9 = i
i + 65° = 180°
i = 180° - 65°
i = 115°
8) Angle 8
= Angle 9 and Angle 8 are angles in a straight line
= Angle 8 = h
h + 115° = 180°
h = 180° - 115°
h = 65°
9)Angle 7
Sum of angles in a triangle = 180°
Angle 7 = g
g = 180° - (65° + Angle 6)
= 180° - (65 + 40
= 180° - 105°
= 75°
Answer:
Si
Step-by-step explanation:
Answer:the side length of a square with the area 0.09 square meter is 0.3 meter.
Step-by-step explanation:
The side length of a square S can be determined by the formula S equals the square root of a where a represents the area of the square. It means that
S = √a
Therefore, the side length of a square with the area 0.09 square meter would be
S = √0.09 = 0.3 meter